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Abstract—The initial stages (2-6 s) of reaction in the C-Si system and the influence of Cu and Al additives on
this process were studied by x-ray diffraction analysis. The average grain size of silicon carbide was found to

attain 500 A after just 6 s of reaction.

INTRODUCTION

The wide application of C-SiC composites in mod-
ern technology is due to their unique physicochemical
properties [1—4]. These materials are usually prepared
by reaction of ultrafine carbon powders with the silicon
melt. The phase-formation kinetics in the C-Si system
were studied for relatively late stages of reaction. Tara-
banov et al. [1] suggested that SiC formation is a diffu-
sion-limited process. However, the diffusion model is
incapable of adequately describing the initial stages of
reaction: the content of SiC formed during the first 60 s
is about one order of magnitude higher than that pre-
dicted by the model. The aim of this work was to study
the initial stages of crystal formation in the C—Si sys-
tem and the influence of Cu and Al additives on this
process.

EXPERIMENTAL

The USB-15 isotropic carbon-based glass-ceramic
was used to investigate phase formation at the interface
between carbon and Si + M (M = Cu, Al) melts during
the first seconds of reaction. A uniform layer of silicon
powder or a silicon + 30 wt % M powder mixture was
applied to a glass-ceramic plate (25 X 5 X 3 mm), which
was then heated to 1500°C under a vacuum of 102 Pa
in a VUP-4 vacuum system. The temperature was mea-
sured with a W/W-Re thermocouple. The holding time
T was 2, 6, 12, 24, 60, or 120 s. In some experiments,
SiC was synthesized by immersing porous graphitized
carbon into Si—Cu or Si—Al melts. X-ray diffraction
studies were carried out with a DRON-3 diffractometer
(CuK, or CoK, radiation). Diffraction profiles were
recorded at a © scan speed of 1/8 and 1/16 deg/min with
rutile as a standard.

The average size of coherently scattering domains
(CSD) was assessed by a conventional procedure [5]
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and by fourth-moment analysis [6]. Interplanar spac-
ings were determined by the method of centroids.
The SiC content of the samples was estimated from the
integrated intensity ratio of the 111 B-SiC peak to the
nearest B,C peak 220. According to Frantsevich ez al.
[7], B,C does not decompose in the presence of SiC,
and its content remains unchanged.

RESULTS AND DISCUSSION

Our XRD data show that the surface layer of the car-
bon-based glass-ceramic plate consists of graphite,
B-SiC, silicon metal, and boron carbide. In addition, the
intermetallic €-phase close in stoichiometry to Cu,Si is
found in the Cu-doped samples. The phase composition
and average particle size depend strongly on T and on
the type of additives.

The most rapid reaction occurs in the Al-doped sam-
ples (Fig. 1). Under the experimental conditions, the
maximum content of silicon carbide is observed after
24 s of reaction (Table 1). In the Cu-doped samples,
SiC formation proceeds more slowly.

Isic/l ¢
P
6L
4+ 1
2t /\30
I} 1 1 1
5 15 T.8

Fig. 1. Integrated intensity of the 111 B-SiC reflection vs.
holding time for materials prepared by reaction of carbon
with the (1) Si, (2) Si+ 30 wt % Al and (3) Si + 30 wt % Cu
melts.
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Table 1. Structural characteristics of SiC as a function of holding time T for samples prepared by reaction of carbon with the

Si, Si + 30 wt % Al and Si + 30 wt % Cu melts

di, A Ly, A Isic/ I ¢
System
2s 6s 128 24s 2s 6s 12s 24s 2s 6s 12s 24 s
C-Si 2.519 | 2.518 | 2.518 | 2.518 420 500 560 730 2.04 3.87 | 5.16 4.63
C-Si-Al | 2.526 | 2.522 | 2.522 | 2.522 | 370 540 590 780 2.18 4.83 6.84 7.34
C-Si-Cu | 2.523 | 2.517 | 2.516 | 2.516 180 220 390 420 1.75 2.67 3.48 1.91

At T =2 s, the average size of SiC grains estimated
from the diffraction peak width (without considering
microstrains) is 180, 370, and 420 A in the systems
C-Si—Cu, C-Si-Al, and C-Si, respectively, while the
CSD size assessed by the more accurate fourth-moment
analysis is =2.5 times larger. By T = 24 s, the average
grain size increases almost twofold (Fig. 2). The growth
rate and CSD size are maximal in the C-Si—Al system
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Fig. 2. Average CSD size of B-SiC vs. holding time for
materials prepared by reaction of carbon with the (7) Si,
(2) Si + 30 wt % Al, and (3) Si + 30 wt % Cu melts.
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Fig. 3. Schematic x-ray diffraction patterns of the sample pre-
pared by reaction of carbon with the 60 wt % Si + 40 wt % Cu
melt: (a) uniform portion of the composite, (b) unreacted
carbon, (c) intermediate region.

(780 A) and minimal in the C-Si~Cu system (420 A)
(Table 1).

The structural parameters of carbon also change
during the first seconds of reaction (Table 2). In the
C-Si-Al system, the average size of graphite CSDs
along the c axis, L, increases most rapidly, from 98 to
114 A in 24 s. In the C-Si and C-Si—Cu systems, L,
attains 109 A in 12 s. Initially, the interplanar spacings
dyg, of graphite and d;;; of B-SiC exceed the values
given in the JCPDS Powder Diffraction File. With
increasing T, the d-spacings and the average micros-

trains |Ad| /d in CSDs gradually decrease (Tables 1, 2).
Calcining the carbon-based glass-ceramic without the
silicon melt under the same conditions for 120 s has no
effect on its structural characteristics.

The model experiments above enable a more
detailed understanding of interactions between porous
graphitized carbon and Si—Al or Si-Cu melts. Under
the action of capillary forces, the melt infiltrates the
porous material and reacts with carbon to give a C-SiC

" composite. When heavily doped melts (=40 wt % Cu or

=10 wt % Al) are used, the phase uniformity of the
composite degrades owing to the formation of macro-
domains containing only graphitized carbon (Fig. 3).

In the Cu-doped composite, these macrodomains are

surrounded by Cu-rich regions, as evidenced by the
appearance of diffraction peaks due to the €-phase
(Cu,Si), which forms only if the melt contains more
than 88 wt % Cu [8]. Therefore, the spatial nonunifor-
mity of the composite is caused by the increase in Cu
content at the carbon—-melt interface. As a result, the
contact angle increases, preventing the melt from pen-
etrating deeper into capillaries. The average CSD size
of SiC in the Cu-rich regions is almost half that in the
uniform material.

Table 3 demonstrates how the phase composition of
the C-SiC composite prepared by reaction of carbon
with the Si + 10 wt % Al melt varies across the reacted
layer. The width (the ratio of the integrated intensity to
the peak height) of the B-SiC 111 peak (100%) remains
constant at 0.18° across the whole mixed-phase layer.
This implies that the average CSD size (=700 A) of
silicon carbide is also constant throughout the layer.
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Table 2. Structural characteristics of graphite as a function of holding time T for samples prepared by reaction of carbon with
the Si, Si + 30 wt % Al, and Si + 30 wt % Cu melts

T,s 0 2 6 12 24 60 120
1, arb. units 9600 2560 2470 3490 3740 4110 4050
oy 3.471 3.453 3.451 3.451 3.451 3.449 3.449
. Booa. deg 1.11 1.06 1.03 1.02 1.03 1.03 1.04
C-Si L.,A 98 104 107 109 107 107 106
D, A 320 390 510 560 420 390 410
(|Ad] Id) x10% | 1.74 1.42 1.44 1.46 1.43 1.42 1.43
1, arb. units 9600 2530 1820 2690 3630 5640 5590
doogs A 3.471 3.453 3.452 3.451 3.447 3.447 3.447
Booz. deg 111 1.04 1.01 1.00 098 | 097 0.98
CSisAl 4 1 1, A 98 106 110 uir | 14| 115 114
D, A 320 600 760 870 - |. 740 | 590 610
(|Ad] /d) x 10?| 1.74 1.59 1.42 1.56 Mg 155 1.54
1, arb. units 9600 1630 2510 3260 | - 3690 3620 3610
doogs A 3.471 3.453 3.449 3450 | 3451 3.449 3.450
Booz» deg 1.11 1.07 1.06 1.02 1.03 1.03 1.03
C-SkCay | g & 98 103 104 109 107 107 107
D, A 320 420 520 550 420 380 380
(IAd] 1d) x 10| 1.74 1.70 1.59 1.56 =156 1.55 1.55

Note: The average CSD size L, was assessed from the peak width; D, and [Ad|/d, by the fourth-moment analysis.

Table 3. Structural characteristics of the major phases (reflections 002 C, 111 Si, and 111 SiC) in the sample prepared by
reaction of carbon with the 90 wt % Si + 10 wt % Al melt at different distances & from the carbon—composite interface

h, mm 8 6 3.5 2.5 0
B, deg 0.18 0.18 0.18 0.18 -
SiC (111) d,A 2526 2.527 . 2.527 2.529 -
1, arb. units 716" - 704 532 480 -
. rye 3376 3,382 3.388 3.388 3.388
C (002) { 1, arb. units 672 752 1300 1505 5280
L., A 464 437 341 341 328
S.(111) { d, A 3.145 3.149 3.153 3.153 =
1, arb. units 210 145 65 52 -

The SiC content estimated from the intensity of B-SiC
reflections gradually decreases with decreasing A (dis-
tance to the carbon—composite interface). The spacing
dy;, of silicon in the composite varies from 3.145 to
3.153 A and exceeds that of pure silicon (3.135 A).
The Al content of silicon (estimated from Vegard’s law)
is =7 wt % at h = 8 mm and increases to =13 wt % at
the interface. Therefore, the spatial nonuniformity of
the C—(Si + Al) composite can be attributed to the
highcr rate of reaction between C and Si (leading to the
formation of a thick layer of products inside the capil-

i
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laries, which prevents further infiltration) as well as to
the substantial Al enrichment of the silicon melt.

The content and structural parameters of polycrys-
talline graphite also vary with A. The average size L, of
graphite CSDs assessed from By, increases from 330 to
460 A as the distance to the carbon—composite interface
rises. The spacing dy, decreases from its maximum
value (3.388 A) in the carbon region to 3.376 A at h =
8 mm (Table 3).

Thus, SiC grains with an average size greater than
500 A are formed in the system C-Si for T < 2 s.
The content of the new phase increases with T, while
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the average size of CSDs increases only twofold.
The rapid increase in SiC content can be explained by
heat evolution (63 * 12 kJ/mol) accompanying SiC for-
mation. As in other ultrafine-particle systems [9, 10],
the heat released at the interface causes local heating in
the reaction zone. Assuming that the reaction is adia-
batic, we find that the local superheating in the reaction
microdomain may exceed 500°C, which promotes
reaction and growth of SiC grains. The addition of
40 wt % Cu inhibits the increase in the average CSD
size of SiC. In the presence of 10 wt % Al, reaction in
the C-Si system proceeds more actively, probably
because aluminum reacts with carbon to form metasta-
ble aluminum carbides [2], the subsequent.decomposi-

tion of which contributes to SiC grain growth. Simulta- -

neously, the starting carbon undergoes structural
changes: the average CSD size increases, while dj, and

m /d decrease.

CONCLUSION

The fast growth of SiC grains at the initial stages of

reaction (26 s) is promoted by the heat of SiC forma-
tion. The addition of copper to the melt (40 wt %)
inhibits growth of SiC grains, while aluminum (10 wt %)
has the opposite effect.

The spatial nonuniformity of the composite pre-
pared from fine-particle carbon and the silicon melt
containing 40 wt % Cu or 10 wt % Al is caused by the
enrichment of the melt with the dopant in the reaction
zone, which prevents further melt infiltration.
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