В. А. Грешняков, Е. А. Беленков СТРУКТУРА И СВОЙСТВА АЛМАЗОПОДОБНОЙ ГРАФАНОВОЙ ФАЗЫ LA5

Представлена информация о численных значениях структурных параметров и некоторых свойств, полученных в результате расчетов методом *PM3* для новой углеродной фазы *LA5* с алмазоподобной структурой. Элементарная ячейка фазы относится к ромбической сингонии, в ячейке содержится 16 атомов, значения ее параметров составляют: a = 4,353 Å, b = 4,357 Å и c = 5,034 Å, структура фазы характеризуется кольцевым параметром $Rng = 4^{1}6^{5}$. Расчетная плотность фазы — 3,342 г/см³, сублимационная энергия — 163,5 ккал/моль, объемный модуль — 416 ГПа. Кроме того, приведены вычисленные значения координат атомов в элементарной ячейке и расчетная рентгенограмма фазы.

Ключевые слова: углерод, алмазоподобная структура, кристаллическая структура, моделирование, полиморфизм.

Углеродные алмазоподобные фазы — это фазы, в которых каждый углеродный атом находится в тетракоординированном состоянии. Для углеродных алмазоподобных фаз, состоящих из атомов, находящихся в кристаллографически эквивалентных позициях, разработаны классификация и модельная схема получения их структур из наноструктурпредшественников [1]. В результате использования этой схемы в работе [1] была установлена возможность существования 20 таких фаз (за исключением кубического алмаза), при дальнейшем анализе, проведенном в работе [2], число возможных алмазоподобных фаз было увеличено до 25. В настоящее время сделан полный анализ и установлена возможность существования 30 алмазоподобных фаз, кроме кубического алмаза. Эти фазы могут иметь кремниевые и карбидокремниевые аналоги [3-4]. Из 30 теоретически предсказанных углеродных алмазоподобных фаз ранее другими авторами были исследованы 14 фаз. Шестнадцать фаз, предсказанных нами впервые, детально еще не были описаны. Поэтому в данной работе приведено подробное описание модельного механизма получения структуры, структурных параметров и некоторых свойств новой углеродной фазы *LA5*.

Расчеты геометрически оптимизированной структуры фазы *LA5*, в которой все углеродные атомы находятся в кристаллографически эквивалентных позициях, были выполнены методом *PM3* [5–6]. Значения структурных параметров были измерены по методике, описанной в работе [1]. Объемный модуль рассчитан по методике, приведенной в [7]. Расчет рентгенограмм произведен по схеме, описанной в монографии [8].

Модельно получить кристаллическую структуру графана-A5 (LA5) можно в результате сшивки графеновых слоев, состоящих из гексагонов, таким образом, что каждые три атома каждого гексагона одного слоя образуют три связи с атомами нижнего слоя, а оставшиеся три атома с атомами верхнего слоя (рис. 1). Получившуюся в итоге структуру LA5 фазы можно наблюдать на рис. 2. Наряду с графеновым слоем L_6 у графана A5 есть еще один слоевой предшественник — L_{4-8} [2].

Рис. 1. Схема получения графана-A5 (LA5) из графеновых слоев L₆. Атомы каждого гексагона графенового слоя, выделенные черным цветом, образуют сшивки с атомами нижнего слоя, остальные атомы в каждом гексагоне образуют сшивки с атомами верхнего слоя

Рис. 2. Изображение геометрически оптимизированной структуры графана А5

Кристаллическая решетка графана A5 может быть охарактеризована длинами четырех видов σ -связей, которые образованы каждым атомом: L_1, L_2, L_3, L_4 (табл. 1). Также имеется шесть видов углов между углерод-углеродными связями (β_{ij}): $\beta_{12}, \beta_{13}, \beta_{14}, \beta_{23}, \beta_{24}, \beta_{34}$, численные значения которых представлены в табл. 2. Независимыми структурными параметрами графана A5 являются $L_1, L_2, L_3, L_4, \beta_{13}$ и β_{14} . Другие углы β_{ij} рассчитываются следующим образом:

Рис. 3. Ромбическая элементарная ячейка графана А5 (LA5)

Вычисленные значения параметров элементарной ячейки составляют: a = 4,353 Å, b = 4,357 Å и c = 5,034 Å (табл. 3). Элементарная ячейка графана A5 содержит 16 атомов, и состояния всех атомов характеризуются кольцевым параметром $Rng = 4^{1}6^{5}$. В табл. 4 приведены координаты атомов в элементарной ячейке, выраженные в долях векторов элементарных трансляций.

$$\beta_{12} = \arccos\left(\frac{\left(L_{1}\cos(\beta_{13})\right)^{2} + \left(L_{2}\cos(\beta_{23})\right)^{2} - 2L_{1}L_{2}\sin(\beta_{13})\sin(\beta_{23})\sin(\alpha_{12})}{2L_{1}L_{2}}\right)$$

$$\beta_{23} = \arccos(L_{1}\cos(\beta_{13}) / L_{2});$$

$$\beta_{24} = \arccos\left(\frac{\left(L_{2}\cos(\beta_{23})\right)^{2} - \left(L_{1}\cos(\beta_{13})\right)^{2} - 2L_{2}L_{4}\sin(\beta_{23})\sin(\alpha_{24})}{2L_{2}L_{4}}\right);$$

$$\beta_{34} = \pi / 2,$$

где

$$\alpha_{12} = \arccos\left(2\left(L_1\sin(\beta_{13}) - L_4\cos(\beta_{14}) / \sin(\beta_{13})\right) / a\right);$$

$$\alpha_{24} = \arccos\left(\left(a / 2 - 2\left((L_1\sin(\beta_{13}))^2 - L_1L_4\cos(\beta_{14})\right) / a\right) / L_4\right).$$

Кристаллическая решетка графана A5 относится к базоцентрированным орторомбическим решеткам Браве и имеет ромбическую элементарную ячейку. Рассчитать длины векторов элементарных трансляций через структурные параметры можно по формулам

$$a = 2\sqrt{\left(L_{1}\sin(\beta_{13})\right)^{2} + L_{4}^{2} - 2L_{1}L_{4}\cos(\beta_{14});}$$

$$b = 2\left(L_{2}\sin(\beta_{23}) + \sqrt{\left(L_{1}\sin(\beta_{13})\right)^{2} - 4\left(\left(L_{1}\sin(\beta_{13})\right)^{2} - L_{1}L_{4}\cos(\beta_{14})\right)^{2}/a^{2}}\right)$$

$$c = 2(L_{3} - L_{1}\cos(\beta_{13})).$$

Таблица 1

Структурные характеристики графана A5 (L_i — длины связей)

<i>L</i> ₁ , Å	L ₂ , Å	<i>L</i> ₃ , Å	L_4 , Å
1,5251	1,5231	1,5717	1,5638

Таблица 2

Структурные характеристики графана A5 (β_{ii} — углы между связями)

β_{12} , °	β_{13} °	β_{14} , °	β ₂₃ , °	β_{24} , °	β ₃₄ , °
108,201	113,370	113,855	113,402	117,276	90,000

В результате теоретических расчетов были определены следующие свойства графана A5: плотность (ρ) — 3,342 г/см³, коэффициент упаковки (f) — 0,324, сублимационная энергия (E_{sub}) — 163,5 ккал/моль, объемный модуль (K) — 416 ГПа. Эти величины меньше значений соответствующих свойств кубического алмаза [9–10].

В данной работе найдена теоретическая рентгенограмма поликристаллического материала, имеющего структуру фазы *LA5* (табл. 5 и рис. 4), рассчитанная по структурным параметрам, которые были найдены в результате модельных расчетов.

Таблица 3

Структурные	характеристики	графана А5
-------------	----------------	------------

Сингония	Z, ат.	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	<i>α</i> , °	β, °	γ, °	Rng	Def, °
Ромбическая	16	4,353	4,357	5,034	90	90	90	4 ¹ 6 ⁵	40,761

Таблица 4

Координаты атомов в элементарной ячейке графана A5 (в долях длин векторов элементарных трансляций)

N⁰	x	У	Z	N⁰	x	У	Z
1	0,06948	0,16040	0,11542	9	0,56948	0,83961	0,11542
2	0,06948	0,33961	0,38458	10	0,56948	0,66040	0,38458
3	0,06948	0,83961	0,61542	11	0,56948	0,16040	0,61542
4	0,06948	0,66040	0,88458	12	0,56948	0,33961	0,88458
5	0,43052	0,16040	0,11542	13	0,93052	0,83961	0,11542
6	0,43052	0,33961	0,38458	14	0,93052	0,66040	0,38458
7	0,43052	0,83961	0,61542	15	0,93052	0,16040	0,61542
8	0,43052	0,66040	0,88458	16	0,93052	0,33961	0,88458

Таблица 5

Расчетные значения межплоскостных расстояний и относительных интенсивностей рентгеновских дифракционных максимумов графана A5 (λ = 1,5405 Å, T = 298 K)

N⁰	hkl	d, Å	I/I,, %	N⁰	hkl	d, Å	I/I,, %
1	111	2,6270	88,7	27	323	0,9802	6,5
2	002	2,5168	4,7	28	224	0,9744	1,9
3	012	2,1794	100,0	29	240	0,9742	2,1
4	020	2,1787	32,9	30	412; 420	0,9737	0,3
5	200	2,1767	73,1	31	115	0,9569	0,7
6	121	1,8170	26,4	32	034	0,9511	0,7
7	022	1,6472	0,3	33	125	0,8944	2,6
8	202	1,6464	0,6	34	143	0,8942	0,8
9	212	1,5401	18,1	35	333	0,8757	0,2
10	220	1,5398	6,0	36	234	0,8715	0,5
11	113	1,4734	11,1	37	341	0,8584	6,9
12	311	1,3280	23,8	38	151	0,8425	1,5
13	123	1,2714	3,2	39	511	0,8418	4,5
14	004	1,2584	15,1	40	006	0,8389	0,7
15	032	1,2580	31,1	41	016	0,8238	2,7
16	014	1,2090	0,4	42	044	0,8236	4,0
17	321	1,1744	20,5	43	052	0,8235	1,1
18	024	1,0897	3,2	44	404	0,8232	0,3
19	204	1,0894	7,0	45	432	0,8231	0,6
20	040	1,0893	3,6	46	315	0,8127	3,1
21	232	1,0892	14,5	47	521	0,7983	6,6
22	400	1,0883	0,3	48	026; 206	0,7829	0,8
23	313	1,0643	15,1	49	325	0,7733	13,0
24	214	1,0569	0,2	50	343	0,7732	4,0
25	141	1,0342	1,8	51	216	0,7705	2,3
26	331	1,0059	0,2	52	244	0,7703	3,4

Рис. 4. Штрих-рентгенограмма графана А5

Рентгенограмма графана A5 (рис. 4) существенно отличается от рентгенограмм кубического алмаза, графита и других экспериментально синтезированных фаз. Поэтому идентификация данной фазы не должна вызвать затруднений. Наиболее вероятный способ ее экспериментального получения — сильное сжатие кристаллов графита вдоль оси, перпендикулярной графеновым слоям.

Список литературы

1. Грешняков В. А. Беленков Е. А. Структура алмазоподобных фаз // Журн. эксперим. и теорет. физики. 2011. Т. 140, № 1. С. 99–111.

2. Грешняков В. А., Беленков Е. А., Березин В. М. Кристаллическая структура и свойства углеродных алмазоподобных фаз. Челябинск : Изд-во Юж.-Урал. гос. ун-та, 2012. 150 с.

3. Грешняков В. А., Беленков Е. А. Алмазоподобные структуры кремниевых фаз // Вестн. Челяб. гос. ун-та. 2012. № 30 (284). Физика. Вып. 14. С. 5–18.

4. Беленков Е. А., Агалямова Э. Н., Грешняков В. А. Классификация и структура фаз карбида кремния // Физика твердого тела. 2012. Т. 54, № 2. С. 404–410. 5. Stewart, J. J. P. Optimization of parameters for semiempirical methods. I. Method / J. J. P. Stewart // J. Comput. Chem. 1989. Vol. 10, № 2. P. 209–220.

6. Stewart, J. J. P. Optimization of parameters for semiempirical methods. II. Applications / J. J. P. Stewart // J. Comput. Chem. 1989. Vol. 10, № 2. P. 221–264.

7. Грешняков В. А., Беленков Е. А. Расчет объемных модулей упругости алмазоподобных углеродных фаз // Фазовые переходы, критические и нелинейные явления в конденсированных средах. Махачкала : ДагНЦ РАН, 2009. С. 137–140.

8. Уманский Я. С. [и др.]. Кристаллография, рентгенография и электронная микроскопия. М. : Металлургия, 1982. 632 с.

9. Pierson, H. O. Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications / H. O. Pierson. Park Ridge : Noyes, 1993. 402 p.

10. Grimsditch, M. H. Brillouin scattering in diamond / M. H. Grimsditch, A. K. Ramdas // Phys. Rev. B. 1975. Vol. 11, № 8. P. 3139–3148.