ФИЗИКА НАНОСТРУКТУР И НАНОМАТЕРИАЛОВ

Е. А. Беленков, В. А. Грешняков, В. В. Мавринский

СТРУКТУРА $SP + SP^3$ ГИБРИДНЫХ УГЛЕРОДНЫХ $\Phi A3$

Методами молекулярной механики рассчитаны структуры гибридных углеродных фаз, состоящих из углеродных атомов, находящихся в состояниях sp и sp³ гибридизации. Предложена классификация sp+sp³ фаз. Рассчитаны структурные и энергетические параметры α , β , γ , δ карбиноалмазов, карбиноректангуланов и карбинокубанов.

Ключевые слова: молекулярная механика, углерод, алмаз, карбин, кристаллическая структура.

Введение

Атомы углерода в химических соединениях могут находиться в различных гибридизированных состояниях — как основных sp, sp^2, sp^3 , так и промежуточных sp^n или sp^m (где 1 < n < 2, 2 < m < 3) [1–3]. Образование углеродных фаз, отличающихся структурой и свойствами, возможно из углеродных атомов, находящихся в различных гибридизированных состояниях. Все углеродные соединения можно разделить на две группы. К первой группе относятся соединения углерода, в которых все углеродные атомы находятся в одинаковых гибридизированных состояниях. Такими соединениями являются основные аллотропные модификации углерода — алмаз, графит, карбин, которые состоят из углеродных атомов в одинаковых основных гибридизированных состояниях — sp^3 , sp^2 и sp соответственно [1-5]. Вторая группа представлена гибридными фазами и наноструктурами, состоящими из атомов углерода в разных гибридных состояниях [1-3]. Ряд гибридных фаз, состоящих из $sp^2 + sp^m + sp^3$ атомов, синтезирован экспериментально — это стеклоуглерод [6], фазы, полученные при полимеризации фуллеренов [7; 8], углеродная пена [9; 10; 11] и др. В результате теоретических исследований предсказана возможность устойчивого существования различных гибридных углеродных фаз и наноструктур — графинов (sp+sp²) [12–14], графинофуллеренов и графиновых нанотрубок (spⁿ+sp^m) [15–20], слоисто-цепочечного углерода и супералмаза (sp+sp³) [21; 22], фаз, получающихся в результате полимеризации фуллеренов или нанотрубок (sp^m+sp³) [23–26], глиттера [27; 27], хонекомбовых фаз [29], клатрата [30] (sp²+sp³) и др. [3].

Наименее изученными гибридными соединениями являются sp+sp³ углеродные фазы. В данной работе выполнен теоретический анализ различных фаз такого состава, разработана схема классификации и выполнены расчеты их структурных характеристик.

Рассмотрим особенности структуры и возможные механизмы формирования гибридных sp+sp³ углеродных фаз. Первой из теоретически предсказанных фаз такого типа является карбиноалмаз, или слоистоцепочечный углерод [21; 22]. Его структура состоит из алмазоподобных слоев sp3гибридизированных атомов, связанных друг с другом короткими углеродными полииновыми цепочками из sp-гибридизированных атомов, так что цепочки перпендикулярны слоям (рис. 1а). Такая фаза была предложена в качестве переходной при превращении графита в алмаз под действием ударных волн [21].

Другой гипотетической структурой предложенной в работе [22], является су-

пералмаз (δ -карбиноалмаз). Его структура такова, что каждый атом углерода, находящийся в состоянии sp^3 -гибридизации, соединяется с другими sp^3 атомами посредством цепочек из двух sp -гибридизированных углеродных атомов (рис. 1б) [22]. Синтези-

ровать супералмаз возможно в результате полимеризации углеводородных молекул, имеющих структуру углеродного каркаса, аналогичную структуре элементарных углеродных фрагментов супералмаза [22].

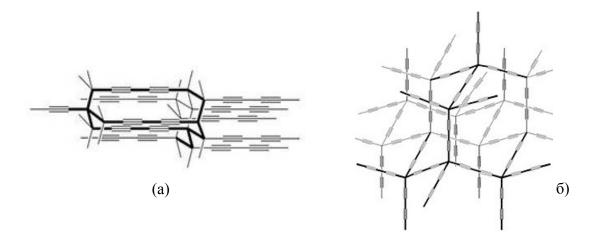


Рис. 1. Структуры слоисто-цепочечного углерода (а) [21] и супералмаза (б) [22]

Теоретически получение гибридных sp+sp³ соединений возможно из уже известных углеродных фаз, состоящих из sp³-гибридизированных атомов. Рассмотрим закономерности формирования таких соединений и схему их классификации, при этом ограничимся рассмотрением только таких структур, в которых все sp³-гибридизированные атомы находятся в одинаковых структурных состояниях.

Классификация гибридных углеродных фаз, состоящих из sp + sp³ гибридизированных атомов

Рассмотрим, какие из $sp + sp^3$ гибридных фаз могут получиться на основе алмаза, ректангулана [31] и суперкубана [32], состоящих из атомов, находящихся в sp^3 -гибридизированном состоянии (рис. 2).

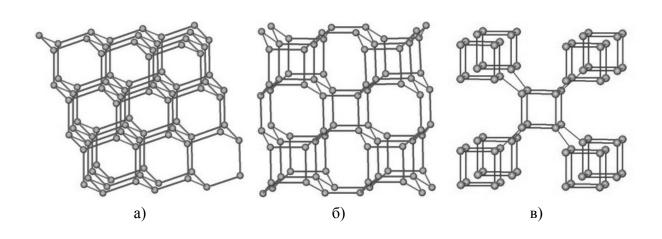


Рис. 2. Структуры алмаза (а), ректангулана (б) и суперкубана (в)

Первый критерий, который можно положить в основу классификационной схемы, — это степень отличия структур новых sp+sp³ фаз от исходных sp³ структур, на основе которых они строятся. Получение нового $sp+sp^3$ гибридного материала можно модельно представить как результат замены в окружении из четырех sp³-гибридизированных атомов у каждого sp³ атома на атомы в состоянии ѕр гибридизации. Особенности структуры sp+sp³ соединений зависят от начальной структуры sp³ фаз до того, как карбиновые цепочки были внедрены в их каркас. Если одна из связей у каждого sp^3 атома с другими четырьмя sp^3 атомами заменена на связь с sp атомом, то в результате получаются α-фазы; аналогично предыдущему случаю, если в окружении каждого sp³ атома два sp³ атома заменены на ѕр атомы, то формируются β-фазы; если три sp³ aтома заменены на sp aтомы, то это у-структуры; и, наконец, если все окружение sp³ aтома состоит из sp aтомов, то получаются б гибридные соединения.

Второй критерий, по которому отличаются различные виды sp+sp³ фаз, заключается в том, какие именно из четырех связей у каждого sp^3 атома в изначальной sp^3 фазе были заменены на sp-sp³ связи. Поясним это на примере определения возможных структур при помощи этого критерия для βкарбиноректангулана. В ректангулане каждый атом улерода образует четыре связи с соседними атомами. Если эти связи пронумеровать как 1, 2, 3, 4, то эквивалентными связями будут связи 1 и 2, 3 и 4 (рис. 3, 4). Поэтому при различных вариантах замен sp³-sp³ связей на карбиновые цепочки могут получаться разные фазы. Для получения β-карбиноректангулана необходима замена двух связей и возможные комбинации относительного расположения полииновых цепочек: 12, 13, 14, 23, 24, 34. Из них эквивалентными являются 13, 14, 23, 24. В итоге возможно формирование трех различных β-карбиноректангулановых фаз: β1-, β2- и β3-карбиноректангулана (рис. 3). Аналогичным способом можно найти подтипы для любых α -, β -, γ -фаз.

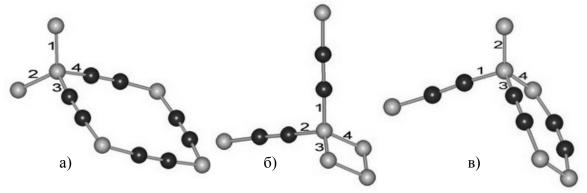


Рис. 3. $Sp+sp^3$ фазы, отличающиеся относительным расположением карбиновых цепочек: $\beta 1$ -карбиноректангулан-1 (a), $\beta 2$ -карбиноректангулан-1 (б), $\beta 3$ -карбиноректангулан-1 (в) (черным цветом выделены sp гибридизированные атомы углерода, серым — sp^3 атомы)

Третий критерий, с помощью которого можно дифференцировать различные sp+sp³ фазы, — это различная длина карбиновых цепочек, образованных sp-гибридизированными атомами. Так, например, можно различать структуры α-карбино-

алмаза-1, α -карбиноалмаза-2, α -карбиноалмаза-3 и т. д., где коэффициенты 1, 2, 3... обозначают число пар sp-гибридизированных атомов углерода, образующих карбиновые цепочки.

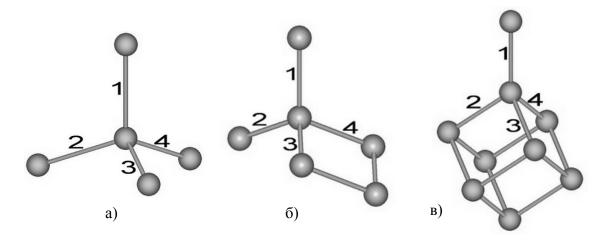


Рис. 4. Нумерация связей в структурах алмаза (а), ректангулана (б) и суперкубана (в)

Методика модельных расчетов

В работе также были выполнены расчегеометрически оптимизированной структуры кластеров исходных sp³ фаз: алмаза, ректангулана и суперкубана, а также кластеров гибридных sp+sp³ фаз, возможность существования которых была установлена в результате теоретического анализа на основе разработанной классификационной схемы. Геометрическая оптимизация проводилась методом молекулярной механики ММ+ [31] для кластеров, содержавших от 288 до 1756 атомов. Оборванные углерод-углеродные связи на поверхности кластеров были компенсированы атомами водорода. Для геометрически оптимизированных кластеров находили параметры элементарных ячеек соответствующих фаз. Энергетические характеристики различных фаз вычисляли с помощью полуэмпирического квантовомеханического метода РМ3 (Parameterized Model revision 3). Сначала вычислялась полная энергия связей кластеров E_{bind.}, затем находили среднюю удельную энергию углерод-углеродной связи <E_{C-C}> для различных фаз. В качестве параметра, описывающего относительную ориентацию межатомных связей в sp+sp³ фазах, использовали углы β_{ij} ($i \neq j$; i, j = 1, 2,

3, 4, где i и j — номера связей) между каждой парой из четырех связей у каждого sp^3 атома.

Для описания деформации карбиновых цепочек использовался параметр, характеризующий углы деформации карбиновых цепочек ξ_i (i = 1, 2, 3, 4, где i — номер свя-3и), входящих в структуру sp^3 -sp соединений, ξ — угол между прямой, соединяющей два ближайших sp³-гибридизированных атома, и прямой, соединяющей sp³ и ближайший к нему sp-гибридизированный атом карбиновой цепочки, которая соединяет пару sp³ атомов. Если для карбиноалмазов этот введенный параметр не обязателен (т. к. все $\xi_i \approx 0$), то для карбиноректангулановых и карбинокубановых фаз он необходим, т. к. в них карбиновые цепочки изогнуты.

Результаты исследования

В результате выполненных модельных расчетов установлено, что возможно формирование всего четырех типов sp^3 - sp гибридных соединений на основе алмаза: α -, β -, γ - и δ -карбиноалмаз (рис. 5). Существование по одной структурной разновидности каждого из карбиноалмазов обусловлено равенством всех углов β_{ij} в алмазе.

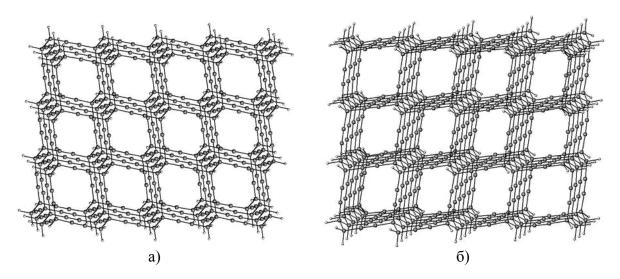


Рис. 5. Геометрически оптимизированные кластеры β -карбиноалмаза-1 (а) и γ -карбиноалмаза-1 (б)

Поскольку в структуре ректангулана не все углы β_{ij} равны между собой, то у α - и γ -карбиноректангуланов существует по две структурных разновидности, у β -карбиноректангуланов — три, исключением явля-

ется δ -карбиноректангулан, имеющий единственную структурную разновидность. Весь класс соединений представлен восемью структурами: α 1-, α 2-, β 1-, β 2-, β 3-, γ 1-, γ 2- и δ -карбиноректангуланом (рис. δ).

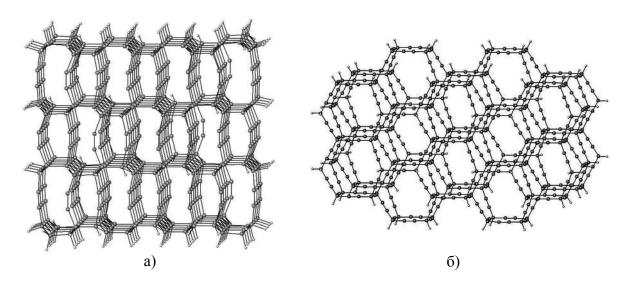


Рис. 6. Геометрически оптимизированные кластеры α -карбино-ректангулана-1 (а) u δ -карбиноректангулана-1 (б)

В третьем классе рассмотренных структур — карбинокубанах, формирующихся на основе суперкубана, вследствие различных значениий углов β_{ij} у α , β и γ фаз появляют-

ся подтипы. Весь класс соединений представлен семью структурами: α 1-, α 2-, β 1-, β 2-, γ 1-, γ 2- и δ -карбинокубаном (рис. 7).

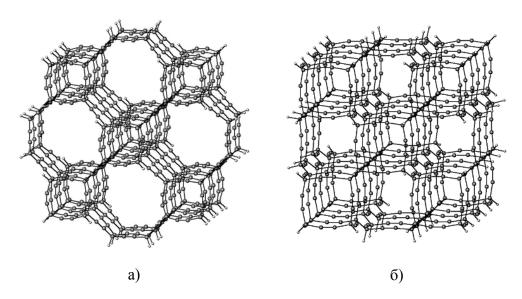


Рис. 7. Геометрически оптимизированные кластеры $\gamma 1$ -карбинокубана-1 (а) u $\gamma 2$ -карбинокубана-1 (б)

В табл. 1 представлены структурные характеристики, рассчитанные для карбиноалмазных, карбиноректангулановых и карбинокубановых фаз.

В ходе сравнительного анализа было установлено, что наблюдается уменьшение плотности карбиноалмазных фаз с увеличением как относительного числа sp-гибридизированных атомов. Из рассчитанных структур самая низкая плотность 0,91 г/см³ соответствует δ-карбиноалмазу-1, что более чем в два раза меньше плотности графита, а наибольшая $2,93 \, \text{г/см}^3 - \alpha$ -карбиноалмазу-1 (табл.1). Углы β_{ij} в структурах от α к δ (т. е. при увеличении доли sp:sp³ связей) стремятся к углу 109,47°, характерному для алмаза, причем максимальное отклонение от этого значения наблюдается у β-карбиноалмаза-1 и составляет 9,0°. Минимальное отклонение углов β_{ii} $\Delta \sim 0.5^{\circ}$ характерно для δ-карбиноалмаза-1, что означает фактическое совпадение с β_{ii} в алмазе. Во всех карбиноалмазных фазах карбиновые цепочки практически не деформированы, т. е. для всех соединений $\xi_i < 0.7^{\circ}$, а кажущееся увеличение углов ξ_i для фаз от α к δ обусловлено сильной зависимостью этого параметра от размеров кластеров; для того чтобы в кластерах δ фазы изгиб был меньше необходимо, чтобы их размеры были больше таковых для других фаз, потому что

в заметный изгиб карбиновых цепочек наблюдается только при приближении к поверхностям кластеров, а у δ кластеров, размером сопоставимых с α кластерами, поверхностный эффект оказывает сильное влияние даже на внутреннюю структуру.

Для карбиноректангуланвых уменьшение плотности соединений наблюдается при увеличении относительного числа карбиновых цепочек в структурах от а к б, а также при увеличении количества sp атомов в составе отдельных цепочек. Из рассчитанных структур наименьшей плотностью 0.89 г/см³ обладает δ -карбиноректангулан-1, а наибольшая 2,87 г/см³ у α1- карбиноректангулана-1 (табл. 1). Плотности α1-, β1-, γ1- и δ-карбиноректангулана-1 практически совпадают с плотностями α-, β-, γ- и δ-карбиноалмаза-1 соответственно, причем максимальное расхождение наблюдается для б-структур и составляет менее 3,5% (табл. 1).

Плотность карбинокубанов, так же как для карбиноалмазов и карбиноректангуланов, уменьшается при увеличении доли sp гибридизированных атомов. Наименьшей плотностью 0,42 г/см³ из рассчитанных структур обладает γ 1-карбинокубан-3, а наибольшая плотность 2,49 г/см³ у α 1-карбинокубана-1. При одинаковом соотноше-

нии sp : sp³ атомов меньшей плотностью обладают те соединения, в которых карбиновые цепочки не изогнуты и заменяют связи 1 (например, плотность α 2-карбинокубана-1 меньше плотности α 1-карбинокубана-1) (рис. 4). Подобная закономерность прослеживается также для карбиноректангуланов. Для фаз, в которых карби-

новые цепочки заменяют связи 2, 3 и 4, состояние гибридизации $sp^{3\pm\delta}$ атомов стремится к sp^3 гибридному, как в структуре алмаза ($\delta \to 0$); это связано с тем, что происходит сильный изгиб цепочек, за счет этого углы β_{ij} становятся одинаковыми.

Таблица 1 Структурные характеристики различных sp+sp³ фаз (сингония: К — кубическая, Т — тетрагональная, Р — ромбическая, М — моноклинная; а, b и с — параметры элементарной ячейки структуры; n_C — количество атомов углерода в элементарной ячейке; р — теоретически рассчитанная плотность соединения)

лерода в элементарнои ячеи	κe; p — 10	еоретичес	ки рассч	итанная п.	IOTHUCI	ь соединения
Название фазы	Синг.	a, Å	b, Å	c, Å	$n_{\rm C}$	ρ, г/cм ³
α-карбиноалмаз-1	M	9,28	4,80	2,65	8	2,88
β-карбиноалмаз-1	P	6,64	6,62	2,71	12	2,00
ү-карбиноалмаз-1	M	7,21	6,72	4,93	16	1,33
δ-карбиноалмаз-1	К	6,58	_	_	40	0,91
α1-карбиноректангулан-1	P	9,26	4,61	2,61	16	2,87
α2-карбиноректангулан-1	T	4,94	_	4,96	16	2,63
β1-карбиноректангулан-1	T	9,94	_	2,69	24	2,00
β1-карбиноректангулан-2	T	14,25	_	2,78	40	1,41
β2-карбиноректангулан-1	T	6,71	_	6,81	24	1,56
β2-карбиноректангулан-2	T	8,36	_	10,84	40	1,05
β3-карбиноректангулан-1	P	9,88	5,29	4,89	24	1,87
γ1-карбиноректангулан-1	T	9,93	_	4,95	32	1,31
γ2-карбиноректангулан-1	P	11,54	6,99	6,46	32	1,23
δ-карбиноректангулан-1	T	11,61	_	6,81	40	0,87
α1-карбинокубан-1	T	5,05	_	10,05	32	2,49
α2-карбинокубан-1	К	7,87	_	_	32	1,31
α2-карбинокубан-2	К	10,67	_	_	48	0,79
α2-карбинокубан-3	К	13,45	_	_	64	0,52
β1-карбинокубан-1	T	9,95	_	5,23	48	1,85
β2-карбинокубан-1	T	6,77	_	14,32	48	1,46
ү1-карбинокубан-1	К	9,98	_	_	64	1,28
ү1-карбинокубан-2	К	14,81	_	_	112	0,69
ү1-карбинокубан-3	К	19,64	_	_	160	0,42
ү2-карбинокубан-1	T	13,28	_	6,34	64	1,14
δ-карбинокубан-1	К	12,97	_	_	80	0,73

Результаты расчета средних энергий углерод-углеродных связей для карбиноалмазов, карбиноректангуланов и карбинокубанов приведены в табл. 2. Анализ этих данных позволил выявить следующие закономерности.

Для карбиноалмазов средние энергии углерод-углеродных связей $\langle E_{C-C} \rangle$ изменяются от -74,89 для δ -карбиноалмаза-1 до -77,91 ккал/моль для α -карбиноалмаза-1 (табл. 2). $\langle E_{C-C} \rangle$ для γ -карбиноалмаза-1 больше, чем для β -карбиноалмаза-1, хотя из оценки, сделанной по соотношению тройных и одинарных связей, в структурах должно быть наоборот. Причиной этого является то, что в структуре γ -карбиноалмаза-1 все орбитальные углы β_{ij} отклоняются от алмазного $109,47^\circ$ на величину $\sim 3,4^\circ$, тогда как для β -карбиноалмаза-1 подобная разница для двух углов доходит до $4,0^\circ$ и $9,0^\circ$ и

для оставшихся четырех углов составляет $\sim 1.5^{\circ}$, т. е. прослеживается зависимость между максимальным отклонением β_{ij} от алмазного угла и энергиями связей.

В карбиноректангулановых фазах средние энергии углерод-углеродных связей изменяются от -71,82 для $\beta1$ -карбиноректангулана-2 до -75,64 ккал/моль для $\beta2$ -карбиноректангулана-1 (табл. 2). Для α -, β - и γ -типов карбиноректангуляна наибольшая энергия связей $\langle E_{C-C} \rangle$ соответствует тем фазам, для которых минимальной является сумма углов изгиба цепочек ($\Sigma\xi_i$); так, например, для β -карбиноректангуланов-1 можно записать соотношение $\langle E_{C-C} \rangle_{\beta-2} \rangle \langle E_{C-C} \rangle_{\beta-1} \rangle \langle E_{C-C} \rangle_{\beta-3}$, причем в данных соединениях суммы углов деформаций цепочек соответственно равны $1,48^\circ, 11,98^\circ$ и $16,51^\circ$.

Таблица 2 Расчет средних энергий углерод-углеродных связей для структур карбиноалмазов, карбиноректангуланов и карбинокубанов с помощью метода РМ3 (C_XH_Y , X и Y — число атомов углерода и водорода в кластере; n_{C-C} — количество углерод-углеродных связей; E_{bind} — полная энергия химической связи структуры; $\langle E_{C-C} \rangle$ — средняя энергия C-C связи; ΔE_{C-C} — погрешность в определении

<E_{C-C}>; размерность энергий ккал/моль)

Название структуры	Кластер	n _{C-C} E _{bind.}		<e<sub>C-C></e<sub>	ΔE_{C-C}
α-карбиноалмаз-1	$C_{294}H_{106}$	535	-52049,07	-76,06	0,32
β-карбиноалмаз-1	$C_{552}H_{124}$	1042	-90524,51	-75,23	0,19
ү-карбиноалмаз-1	$C_{526}H_{108}$	998	-85781,34	-75,37	0,17
δ-карбиноалмаз-1	$C_{610}H_{90}$	1175	-96800,47	-74,89	0,00
α1-карбиноректангулан-1	$C_{300}H_{104}$	548	-50934,44	-74,38	0,04
α2-карбиноректангулан-1	$C_{208}H_{80}$	376	-35997,52	-74,92	0,13
β1-карбиноректангулан-1	$C_{568}H_{136}$	1068	-93477,21	-75,07	0,27
β1-карбиноректангулан-2	$C_{528}H_{88}$	1012	-81295,22	-71,82	0,11
β2-карбиноректангулан-1	$C_{616}H_{136}$	1164	-101350,2	-75,64	0,08
β2-карбиноректангулан-2	$C_{540}H_{96}$	1032	-84653,16	-72,93	0,30
β3-карбиноректангулан-1	$C_{608}H_{140}$	1146	-98182,09	-73,72	0,21
γ1-карбиноректангулан-1	$C_{612}H_{108}$	1170	-98228,84	-74,93	0,06
γ2-карбиноректангулан-1	$C_{544}H_{104}$	1036	-87474,96	-74,61	0,11
δ-карбиноректангулан-1	$C_{592}H_{88}$	1140	-93733,63	-74,67	0,07
α1-карбинокубан-1	$C_{320}H_{112}$	584	-54068,92	-73,82	0,06
α2-карбинокубан-1	$C_{528}H_{112}$	1000	-86154,91	-75,20	0,69
α2-карбинокубан-2	$C_{528}H_{96}$	1008	-83108,32	-73,13	0,79

Окончание табл. 2

Название структуры	Кластер	n _{C-C}	$E_{bind.}$	<e<sub>C-C></e<sub>	ΔE_{C-C}
α2-карбинокубан-3	$C_{528}H_{80}$	1016	-80923,31	-71,95	0,73
β1-карбинокубан-1	$C_{576}H_{80}$	1112	-88524,19	-72,57	0,20
β2-карбинокубан-1	$C_{496}H_{80}$	952	-77803,70	-73,51	0,23
γ1-карбинокубан-1	$C_{568}H_{80}$	1096	-89490,98	-74,51	0,08
γ1-карбинокубан-2	$C_{488}H_{72}$	940	-74660,37	-71,93	0,05
ү1-карбинокубан-3	$C_{544}H_{48}$	1064	-80061,55	-70,83	0,02
γ2-карбинокубан-1	$C_{560}H_{80}$	1080	-86802,75	-73,13	0,08
δ-карбинокубан-1	$C_{544}H_{56}$	1060	-83863,44	-73,95	0,10

Для карбинокубановых фаз $\langle E_{C-C} \rangle$ изменяются от -70,83 для $\gamma 1$ -карбинокубана-3 до -75,20 ккал/моль для $\alpha 2$ -карбинокубана-1 (табл. 2). Так же как и для карбиноректангуланов, в α -, β - и γ -карбинокубанах наибольшую $\langle E_{C-C} \rangle$ имеют те, у которых сумма углов изгиба цепочек ($\Sigma \xi_i$) наименьшая.

Обсуждение результатов

В результате исследований, выполненных в работе, была уточнена классификация sp+sp³, предложенная в [34]. Ранее было установлено, что класс карбиноалмазов представлен четырьмя структурами, класс карбинокубанов — семью структурами и карбиноректангуланы представлены пятью структурами [3; 34]. В данной работе была установлена возможность существования еще трех новых структур (α2-, β3- и γ2-карбиноректангулан), а также доказано, что максимально возможное количество различных фаз для карбиноалмазов — четыре, для карбиноректангуланов — восемь и для карбинокубанов — семь.

Впервые установлено, что в большинстве гибридных sp+sp³ фаз карбиновые цепочки изогнуты (исключением являются карбиноалмазы, а также карбинокубаны, в которых карбиновые цепочки заменяют связь 1). Изгиб цепочек по дуге окружности наблюдается у карбинокубанов в позициях 2, 3 и 4 связей и у карбиноректангуланов в позициях 3 и 4 связей. И, наконец, в карби-

норектангуланах на позициях 1 и 2 связей карбиновые цепочки имеют синусоидальный изгиб. Для всех изученных sp+sp³ соединений плотности уменьшаются при увеличении относительного числа sp атомов. Наименьшую плотность имеют те соединения, в которых преобладают карбиновые цепочки с малым изгибом. Для трех представленных классов sp+sp³ фаз можно записать убывающий ряд плотностей (sp: $sp^3 =$ const): $\rho_{\kappa.a.} > \rho_{\kappa.p.} > \rho_{\kappa.\kappa.}$ (к.а. — карбиноалмаз, к.р. — карбиноректангулан, к.к. карбинокубан). Плотности большинства sp+sp³ соединений, вычисленные в данной работе, оказались достаточно близкими к плотностям, рассчитанным ранее [34].

Абсолютные значения удельных энергий связей, вычисленные методом РМ3, значительно отличаются от аналогичных значений, найденных расширенным методом Хюккеля [34]. Однако общие закономерности, характеризующие относительное соотношение энергетических характеристик различных фаз, аналогичны — $<\!\!E_{C-C}\!\!>$ в $sp+sp^3$ фазах больше $<\!\!E_{C-C}\!\!>$ sp^3 фаз, на основе которых они формируются. В результате сопоставительного анализа средних энергий C-C связей в sp³-sp структурах с карбиновыми цепочками из двух sp атомов (рис. 8) установлено, что $<E_{C-C}>_{\kappa.a.}<$ $<E_{C-C}>_{\kappa,p.}<<E_{C-C}>_{\kappa,\kappa}$, исключением являются β2-карбиноректангулан-1 и α2-карбинокубан-1.

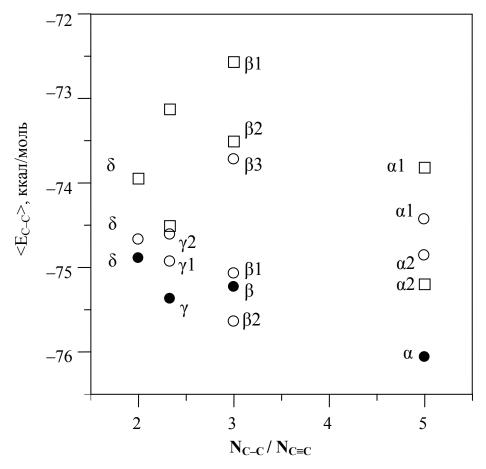


Рис. 8. График зависимости средних энергий углерод-углеродных связей от отношения одинарных и тройных связей в различных $sp+sp^3$ фазах:

ullet — карбиноалмазных;

− карбиноректангулановых;

□ — карбинокубановых

Экспериментальный синтеза sp+sp³ материалов, по-видимому, можно осуществить в результате карбонизации и сшивки углеродных каркасов молекул, имеющих структуру, наиболее близкую к структуре будущего гибридного соединения. Методологические основы полимеризации углеводородных молекул для получения новых углеродных фаз подробно рассмотрены в обзоре Дидриха и Рубина [22], и новые sp+sp³ углеродные фазы, структура которых была рассчитана в данной работе, могут быть синтезированы именно таким способом.

СПИСОК ЛИТЕРАТУРЫ

- 1. Heimann, R. B. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization / R. B. Heimann, S. E. Evsyukov, Y. Koga // Carbon. 1997. V. 35. P. 1654–1658.
- Belenkov, E. A. Classification of carbon structures / E. A. Belenkov // Hydrogen Material Science & Chemistry of Carbon Nanomaterials. Sudak. Crimea. Ukraine. 2003. P. 731–735.
- 3. Беленков, Е. А. Наноалмазы и родственные углеродные наноматериалы / Е. А. Беленков, В. В. Ивановская, А. Л. Ивановский // Екатеринбург: УрО РАН. 2008. 169 с.
- 4. Kudryavtsev, Yu. P. The discovery of carbyne / Yu. P. Kudryavtsev // Physics and Chemistry of Materials with Low-

- Dimensional Structures. 1998. V. 21. P. 1–6.
- 5. Шулепов, С. В. Физика углегродных материалов / С. В. Шулепов // М. : Металлургия. 1990. 336 с.
- 6. Dubgen, R. Glassy carbon a material for use in analytical chemistry / R. Dubgen // Meitingen: Sigri. 1985. P. 168.
- Brazhkin, V.V. Comment on «New Metallic Crystalline Carbon: Three Dimensionally Polymerized C60 Fullerite» / V. V. Brazhkin, A. G. Lyapin // Phys Rev. Lett. 2000. V. 85. P. 5671.
- 8. Бражкин, В. В. Новые кристаллические и аморфные модификации углерода, полученные из фуллерита при высоком давлении / В. В. Бражкин, А. Г. Ляпин, С. Г. Ляпин, С. В. Попова, Р. Н. Волошин, Ю. А. Клюев, А. М. Налетов, Н. А. Мельник // УФН. 1997. Т. 167. С. 1019–1022.
- 9. Umemoto, K. Carbon foam: Spanning the phase space between graphite and diamond / K. Umemoto, S. Saito, S. Berber, D. Tomanek // Phys. Rev. B. 2001. V. 64. P. 193409.
- Liu, M. Carbon foams prepared by an oil-in-water emulsion method / M. Liu, L. Gan, F. Zhao, H. Xu, X. Fan, C. Tian, X. Wang, Z. Xu, Z. Hao, L. Chen // Carbon. 2007. V. 45. P. 2710–2712.
- Fathollahi, B. Microstructure of mesophase-based carbon foam / B. Fathollahi, J. Zimmer // Carbon. 2007. V. 45. P. 3057–3059.
- Baughman, R. H. Structure property predictions for new planar forms of carbon: layered phases containing sp" and sp' atoms / R. H. Baughman, H. Eckhardt, M. Kertesz // J. Chem. Phys. 1987. V. 87. P. 6687–6699.
- Narita, N. Optimized geometries and electronic structures of graphyne and its family / N. Narita, S. Nagai, S. Suzuki, K. Nakao // Phys. Rev. B. 1998. V. 58. P. 11009–11014.
- 14. Беленков, Е. А. Трехмерная структура углеродных фаз, состоящих из sp—sp² гибридизированных атомов / Е. А. Беленков, В. В. Мавринский // Изв. Челяб. науч. центра. 2006. № 2 (32). С. 13–18.

- 15. Baughman, R. H. Fullereneynes: a new family of porous fullerenes / R. H. Baughman, D. S. Galvao, C. Cui, Y. Wang, D. Tomanek // Chem. Phys. Lett. 1993. V. 204. P. 814.
- 16. Беленков, Е. А. Анализ возможной структуры новых каркасных форм углерода. Часть 1. Структура графанофуллеренов / Е. А. Беленков // Изв. Челяб. науч. центра. 2002. № 1. С. 12–16.
- 17. Беленков, Е. А. Анализ возможной структуры новых каркасных форм углерода. Ч. 2. Структура графановых нанотрубок / Е. А. Беленков // Там же. 2002. № 1. С. 17–21.
- 18. Беленков, Е. А. Графанофуллерены и графановые нанотрубки новые структурные модификации углерода [Электронный ресурс] // Вестн. ОФО РФ. 2002. № 1. Режим доступа: http://www.uniphys.ru/journal/N1-02/toparticle/toparticle.htm.
- Enyashin, A. N. Structural and electronic properties of new α-graphyne-based carbon fullerenes / A. N. Enyashin, A. A. Sofronof, Yu. N. Makurin, A. L. Ivanovskii // J. Mol. Struct.: Theochem. 2004. V. 684. P. 29–33.
- Coluci, V.R. Families of carbon nanotubes: Graphyne-based nanotubes / V. R. Coluci, S. F. Braga, S. B. Legoas, D. S. Galvao, R. H. Baughman // Phys. Rev. B. 2003. V. 68. P. 035430.
- 21. Мельниченко, В. М. Слоистая структура алмаза / В. М. Мельниченко, Ю. Н. Никулин, А. М. Сладков // Природа. 1984. № 7. С. 22–30.
- 22. Diederich, F. Synthetic Approaches toward Molecular and Polymeric Carbon Allotropes / F. Diederich, Y. Rubin // Angewandte Chemie. Int. Ed. Engl. 1992. V. 31. P. 1101–1123.
- 23. Blyander, D. M. Calculated properties of polybenzene and hyperdiamond / D. M. Blyander, L. Kleinman // Phys. Rev. B. 1993. V. 47. P. 10967–10969.
- 24. Kaxiras, E . Electronic properties of a cluster-based solid form of carbon: C_{28} hyperdiamond / E. Kaxiras, L. Zeger, A. Antonelli, Y. Juan // Phys. Rev. B. 1994. V. 49. P. 8446.

- 25. Беленков, Е. А. Моделирование формирования наноструктури-рованных углеродных фаз из фуллеренов и нанотрубок / Е. А. Беленков, В. А. Али-Паша // Фазовые переходы, критические и нелинейные явления в конденсированных средах: сб. тр. междунар. конф. Махачкала, 2007. С. 505–508.
- 26. Yildirim T. Pressure-induced interlinking of carbon nanotubes / T. Yildirim, O. Gulseren, C. Kilic, S. Ciraci // Phys. Rev. B. 2000. V. 62 P. 12648–12651.
- 27. Bucknum, M. J. A hypothetical dense 3,4-connected carbon net and related B₂C and CN₂ nets built from 1,4-cyckohexadienoid units / M. J. Bucknum, R. Hoffmann // J. Am. Chem. Soc. 1994. V. 116. P. 11456–11464.
- 28. Bucknum, M. J. Effects of spiroconjugation in the electronic band structure of glitter / M. J. Bucknum // Carbon. 1997. V 35 P 1–16
- 29. Park, N. Electronic structure and mechanical stability of the graphitic honeycomb lattice / N. Park, J. Ihm // Phys. Rev. B. 2000. V. 62. P. 7614–7618.

- 30. Bernasconi, M. Clathrates as effective ptype and n-type tetrahedral carbon semiconductors / M. Bernasconi, S. Gaito, G. Benedek // Phys. Rev. B. 2000. V. 61. P. 12689.
- 31. Baughman, R. H. Tubulanes: carbon phases based on cross-linked fullerene tubules / R. H. Baughman, D. S. Galvao // Chem. Phys. Lett. 1993. V. 211. P. 110–118.
- 32. Burdett, J. K. The Moments method and elemental structures / J. K. Burdett, S. Lee // J. Am. Chem. Soc. 1985. V. 107. P. 3063–3082.
- 33. Berkert, U. Molecular Mechanics / U. Berkert, N. L. Allinger // American chemical society monograph. 1982. Vol. 177. P. 1–327.
- 34. Беленков, Е. А. Формирование структуры карбиноалмазных фаз / Е. А. Беленков, В. В. Мавринский, В. А. Грешняков // Фазовые переходы, критические и нелинейные явления в конденсированных средах. Махачкала, 2007. С. 501–504.