= ТЕОРИЯ КРИСТАЛЛИЧЕСКИХ СТРУКТУР =

УДК 546.26

МОДЕЛИРОВАНИЕ ПРОЦЕССА ФОРМИРОВАНИЯ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ УГЛЕРОДНОГО ВОЛОКНА

© 1999 г. Е.А.Беленков

Челябинский государственный университет Поступила в редакцию 22.10.97 г. После доработки 20.01.98 г.

Методом атом-атомного потенциала выполнено моделирование процесса трехмерного упорядочения в углеродном волокне. Установлено, что отличие величины межплоскостного расстояния d_{002} в углеродном волокне от значения, характерного для графита, и отсутствие трехмерного упорядочения структуры обусловлено малыми размерами кристаллических областей. Плохая графитируемость углеродного волокна связана с ограниченными возможностями увеличения размеров кристаллических областей.

Процесс трансформации углеродных материалов с неупорядоченной структурой в графит, называемый графитацией, развивается при высокотемпературной обработке [1, 2]. Согласно турбостратной модели графитации, предложенной Уорреном и Франклин, кристаллические области исходного углеродного материала состоят из слоев, аналогичных слоям углеродных атомов в графите, однако беспорядочно разориентированных между собой. При нагревании происходит увеличение степени взаимной ориентации слоев и рост размеров кристаллических областей. В результате формируется поликристаллический графит. Основным недостатком данной модели, по мнению Брэгга с соавторами, является "то, что она не предсказывает межслоевые расстояния" d_{002} , отличные от графитовых [3, 4]. Вместо турбостратной модели предлагается модель Майера и Меринга [5], в которой допускается существование в межслоевых промежутках атомов углерода, присоединенных к слоям и искажающих их. Процесс графитации с такой точки зрения представляет собой ряд последовательных фазовых переходов между состояниями с фиксированными значениями межслоевых расстояний. Однако, хотя такой подход и позволяет объяснить отличие величины d_{002} углеродных материалов от графитовой, он не может найти объяснения другим экспериментальным фактам. Во-первых, экспериментально наблюдается взаимосвязь между межслоевыми расстояниями и размерами кристаллов в углеродных материалах [1, 6]. Во-вторых, имеются плохо графитируемые материалы, например углеродные волокна (УВ), не превращающиеся в графит даже при термообработке выше 3000°С, в то время как в нефтяных коксах процесс графитации завершается при существенно более низкой температуре порядка 2500°С [7-9].

Возможность различного толкования процесса графитации вызвана тем, что за основу принимают экспериментальные данные о средних значениях структурных параметров материала, а сами модели описывают структуру отдельных кристаллов. Прямые экспериментальные измерения структурных параметров отдельного кристалла затруднительны, что диктует необходимость компьютерного моделирования для определения энергетиструктур чески выгодных кристаллических областей. В качестве объекта моделирования необходимо выбрать углеродное волокно как материал, процесс графитации которого не находит удовлетворительного объяснения в модели Майера-Меринга. Поэтому задачу работы составило численное моделирование процесса структурного упорядочения углеродных волокон.

СТРУКТУРНАЯ МОДЕЛЬ И ПРОЦЕДУРА РАСЧЕТОВ

В качестве модели для расчетов была взята модель Руланда [9], согласно которой углеродное волокно состоит из фибрилл, представляющих совокупность стопок слоев-лент, ориентированных преимущественно вдоль оси волокна. Структура слоя, в котором атомы углерода связаны ковалентными связями, считалась подобной графитовой и имеющей два подтипа, различающихся ориентацией связей в слое. Первый подтип – аналог УВ, получаемых из полиакрилонитрила (ПАН-структура рис. 1а), второй – из гидратцеллюлозы (ГТЦ-структура рис. 1б). Длину слоевлент принимали равной бесконечности, а ширину измеряли числом атомов в поперечном сечении и варьировали от 2 до 24.

Моделирование заключалось в поиске такого взаимного расположения слоев, при котором их

Рис. 1. Схема графитоподобного слоя-ленты шириной в 3 атома: а – ПАН-структура ($L_{a\perp}$ = 0.426 нм); б – ГТЦ-структура ($L_{a\perp}$ = 0.492 нм). Затемнены элементарные ячейки слоя.

Рис. 2. Схема относительного расположения двух слоев шириной в 3 атома для ПАН-структуры при сдвиге на вектор **S** = *x***i** + *y***j**.

энергия взаимодействия минимальна. Расчет выполнен методом атом-атомного потенциала [10], возможность применения которого для моделирования структурного упорядочения в углеродных материалах показана в ряде работ [11, 12]. В этом методе энергия ван-дер-ваальсова взаимодействия каждого атома одного слоя с любым атомом другого рассчитывается по формуле

$$E = -Ar^{-6} + B\exp(-\alpha r), \qquad (1)$$

где r – расстояние между атомами, а A, B и α – эмпирические коэффициенты. Для взаимодействия углерод–углерод их значения следующие [6]:

$$A = 1.49887$$
 Дж нм⁶/моль,
 $B = 1.75846 \times 10^8$ Дж/моль, (2)
 $\alpha = 35.8$ нм⁻¹.

Так как полная энергия связи двух бесконечных слоев бесконечна и равна сумме энергий взаимодействия всех атомов одного слоя со всеми атомами другого, в работе проводился расчет удельной энергии связи E_y , приходящейся на два атома, составляющих независимую часть элементарной ячейки слоя в графите. Для этого находили элементарную ячейку слоя в углеродном волокне (рис. 1), трансляцией которой вдоль ленты можно получить весь слой. Тогда полная энергия взаимодействия слоев равна сумме энергий взаи-

КРИСТАЛЛОГРАФИЯ том 44 № 5 1999

модействия всех ячеек одного слоя со всеми ячейками другого слоя:

1

$$E_{\text{пол}} = \sum_{i = -\infty} E_{\pi} = N E_{\pi}, \qquad (3)$$

где $N = \infty$ – число ячеек в слое. Удельная энергия связи равна удвоенному отношению энергии связи элементарной ячейки слоя в углеродном волокне к числу атомов (*n*) в ячейке:

$$E_{\rm v} = 2E_{\rm g}/n. \tag{4}$$

Кроме того, при вычислении величины $E_{\rm g}$ можно произвести замену бесконечного слоя на слой конечной длины. Расчеты показывают, что достаточно взять слой в 7 (рис. 2) или 11 элементарных ячеек (для ГТЦ- и ПАН-структуры соответственно). Дальнейшее увеличение длины слоя приводит к изменению $E_{\rm g}$ менее чем на 0.1%.

Расчеты проводили, варьируя межслоевое расстояние d_{002} при нулевом относительном смещении слоев, т.е. когда каждый атом верхнего слоя находился над соответствующим атомом нижнего слоя. Далее значение d_{002} , при котором энергия взаимодействия слоев минимальна, фиксировалось и проводились вычисления энергии связи при различных значениях вектора **S** (рис. 2), задающего относительный сдвиг слоев:

$$\mathbf{S} = x\mathbf{i} + y\mathbf{j},\tag{5}$$

БЕЛЕНКОВ

Размер слоя, атомов	Структура									
		ГТЦ		ПАН						
	$L_{a\perp}$, нм	<i>d</i> ₀₀₂ , нм	<i>Е</i> _у , Дж/моль	$L_{a\perp}$, нм	d ₀₀₂ , нм	<i>Е</i> _у , Дж/моль				
2	0.246	0.3457	-5295.9	0.213	0.3469	-4950.1				
3	0.492	0.3428	-6366.0	0.426	0.3436	-6083.8				
4	0.738	0.3413	-6960.1	0.639	0.3420	-6734.1				
5	0.984	0.3407	-7330.2	0.852	0.3411	-7145.1				
6	1.230	0.3402	-7581.1	1.065	0.3405	-7425.9				
7	1.476	0.3398	-7761.8	1.278	0.3401	-7628.9				
8	1.722	0.3395	-7897.9	1.491	0.3399	-7782.4				
10	2.214	0.3393	-8089.1	1.917	0.3395	-7997.2				
12	2.705	0.3390	-8217.3	2.343	0.3392	-8143.2				
14	3.197	0.3389	-8308.6	2.769	0.3391	-8245.4				
16	3.689	0.3387	-8377.6	3.195	0.3389	-8323.2				
20	4.673	0.3386	-8473.4	4.047	0.3387	-8432.0				
24	5.657	0.3385	-8538.2	4.899	0.3386	-8504.5				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	0.3380	-8840.5	8	0.3380	-8840.5				

**Таблица 1.** Изменение межслоевого расстояния  $d_{002}$  и удельной энергии ван-дер-ваальсова взаимодействия  $E_y$  в зависимости от ширины  $L_{a\perp}$  графитоподобных слоев, составляющих УВ, при расположении слоев один над другим

**Таблица 2.** Изменение межслоевого расстояния  $d_{002}$ , взаимного сдвига слоев S и удельной энергии ван-дер-ваальсова взаимодействия  $E_y$  в зависимости от ширины слоев  $L_{a\perp}$ 

Размер слоя, атомов	Структура										
	ГТЦ				ПАН						
	$L_{a\perp}$ , нм	<b>S</b>  , нм	<i>d</i> ₀₀₂ , нм	<i>Е</i> _у , Дж/моль	$L_{a\perp}$ , нм	<b>S</b>  , нм	<i>d</i> ₀₀₂ , нм	$E_{ m y},$ Дж/моль			
2	0.246	0.1840	0.3422	-5446.0	0.213	0.1231	0.3452	-5021.9			
3	0.492	0.1644	0.3398	-6517.7	0.426	0.1231	0.3418	-6173.9			
4	0.738	0.1576	0.3386	-7112.0	0.639	0.1231	0.3401	-6824.3			
5	0.984	0.1540	0.3380	-7481.9	0.852	0.1232	0.3392	-7251.6			
6	1.230	0.1509	0.3376	-7732.5	1.065	0.1232	0.3386	-7536.6			
7	1.476	0.1499	0.3373	-7913.0	1.278	0.1233	0.3382	-7742.5			
8	1.722	0.1465	0.3370	-8048.9	1.491	0.1235	0.3379	-7898.3			
10	2.214	0.1461	0.3369	-8239.9	1.917	0.1269	0.3374	-8118.9			
12	2.705	0.1449	0.3366	-8367.6	2.343	0.1294	0.3371	-8267.3			
	∞	0.1420	0.3357	-9006.5	∞	0.1420	0.3357	-9006.5			

где і и ј – векторы трансляций по осям x и y соответственно ( $|\mathbf{i}| = |\mathbf{j}| = 1$ ). Значения x для ГТЦ-структуры варьировали от 0 до 3a (a = 0.142 нм – кратчайшее расстояние между атомами C в слое), шаг изменения  $\Delta x = 0.15a$ . Величина y изменялась от  $-2.5a\cos 30^{\circ}$  до  $2.5a\cos 30^{\circ}$ , шаг изменения  $\Delta y = 0.5a\cos 30^{\circ}$ . Для ПАН-структуры соответствующие интервалы варьирования  $x \in [-2.5a\cos 30^{\circ}, 2.5a\cos 30^{\circ}]$  и  $y \in [0, 3a]$  ( $\Delta x = 0.5a\cos 30^{\circ}$ ,

 $\Delta y = 0.15a$ ). Таким образом, проводился расчет энергии взаимодействия слоев при 231 различном значении вектора **S**.

Были найдены значения векторов, задающих взаимное расположение слоев, при котором их энергия взаимодействия минимальна, а затем при найденных значениях **S** определяли уточненное, наиболее энергетически выгодное значение межслоевого расстояния  $d_{002}$ .

КРИСТАЛЛОГРАФИЯ том 44 № 5 1999

## РЕЗУЛЬТАТЫ РАСЧЕТОВ И ОБСУЖДЕНИЕ

Результаты модельных расчетов приведены в табл. 1 и 2. Установлено, что межслоевые расстояния, при которых энергия взаимодействия слоев минимальна, зависят от их ширины. При расположении слоев, когда каждый атом одного слоя расположен над атомом другого (S = 0), экспериментальные точки для ГТЦ- и ПАН-структуры ложатся на одну кривую (рис. 3а). Так, при ширине слоя ~0.45 нм межслоевое расстояние  $d_{002} \approx 0.3434$  нм. Увеличение ширины слоя  $L_{a\perp}$  до 5 нм приводит к уменьшению  $d_{002}$  до 0.3386 нм. Дальнейший рост размеров слоев до бесконечности сопровождается постепенным уменьшением межслоевого расстояния до 0.3380 нм. Оценка энергетически выгодных расстояний при расположении слоев, соответствующем минимуму в трех измерениях, т.е. при  $S \neq 0$ , демонстрирует различия в ходе процесса уменьшения  $d_{002}$ , обусловленного ростом L_{a1} для ГТЦ- и ПАН-структур. Для ГТЦ-структуры при одинаковых размерах слоев межслоевые расстояния меньше, чем для ПАН-структуры (рис. 3а). Так, для  $L_{a\perp} \approx 1.5$  нм  $d_{002}$ (ПАН) = 0.3378 нм, а  $d_{002}$ (ГТЦ) = 0.3372 нм. Однако при стремлении поперечных размеров слоев к бесконечности межслоевые расстояния для обеих структур стремятся к значению 0.3357, близкому к величине, характерной для графита. Одновременно со снижением межслоевых расстояний рост ширины слоев обусловливает снижение удельной энергии взаимодействий. При нулевом векторе S величина  $E_v$  уменьшается от -4950.1 при поперечных размерах слоя 0.213 нм до -8840.5 Дж/моль при бесконечных размерах слоя. Если же энергия взаимодействия слоев минимизирована еще и за счет наиболее выгодного взаимного сдвига (S  $\neq$  0), то  $E_y = -5021.9$  при  $L_{a\perp} = 0.213$  нм и –9006.5 Дж/моль при  $L_{a\perp} = \infty$ .

Результаты расчета для  $S \neq 0$  представлены в табл. 2 и на рис. 36 и 4. Установлено, что при малой ширине слоев (<3 нм) вектор относительного сдвига, при котором энергия их взаимодействия минимальна, отличается от такового для графитовой структуры. Так, при  $L_{a\perp} \approx 0.5$  нм для ГТЦ-структуры |S|  $\approx 0.164$  нм, а для ПАН-структуры  $\sim 0.123$  нм, в то время как для графита соответствующее значение 0.142 нм. С ростом ширины слоя происходит постепенное изменение |S|, так что при стремлении  $L_{a\perp}$  к бесконечности относительный сдвиг слоев становится таким же, как для графитовой структуры.

Таким образом, установлено, что отличие межслоевых расстояний  $d_{002}$  в углеродном волокне от значения, характерного для графита, обусловлено, как и в дисперсном углероде [11, 12], малыми размерами кристаллических областей. Мелкокристаллическая структура углеродного волокна не допускает трехмерного порядка во

КРИСТАЛЛОГРАФИЯ том 44 № 5 1999

взаимном расположении графитоподобных слоев, составляющих кристаллы. Структура кристаллических областей малого размера с межслоевым расстоянием  $d_{002}$ , отличающимся от такового для графита, не является дефектной, а, наоборот, равновесна и энергетически выгодна. Следовательно, наиболее адекватна турбостратная модель графитации.

Основным аргументом в пользу дефектности как причины увеличения межслоевых расстояний в графите считают эксперименты по дроблению графита и облучению его быстрыми нейтронами [3, 4]. В этих исследованиях авторы фиксируют немонотонное изменение  $d_{002}$  в зависимости от степени размола или дозы облучения. Однако причиной данного явления, по-видимому, являются не межслоевые дефекты, а более или менее ступенчатое изменение среднего размера кристаллов при размоле и облучении, что и обусловливает аналогичное изменение межслоевого расстояния.



**Рис. 3.** Изменение межслоевого расстояния  $d_{002}$  (a)  $(I - \Pi AH$ - и ГТЦ-структуры при S = 0;  $2 - \Pi AH$ -структура при  $S \neq 0$ ;  $3 - \Gamma \Gamma \Pi$ -структура при  $S \neq 0$ ) и относительного расположения слоев (б)  $(I - \Gamma \Gamma \Pi$ -структура;  $2 - \Pi AH$ -структура) в зависимости от их ширины.



Рис. 4. Изменение удельной энергии ван-дер-ваальсова взаимодействия (Дж/моль) в зависимости от взаимного расположения и поперечных размеров слоев: а–в–ГТЦ-структура (2, 6 и 12 атомов); г–е–ПАН-структура (2, 6 и 12 атомов).

Преобразование турбостратной структуры углеродного волокна в графитовую возможно лишь при увеличении размеров кристаллов. Поэтому причина плохой графитируемости волокон заключается в ограниченных возможностях роста размеров кристаллов, обусловленных, по-видимому, малыми размерами фибрилл, формирующихся еще в исходных полимерных волокнах. Ход процесса графитации углеродного волокна зависит также от типа структуры. Для ГТЦструктуры при одинаковых с ПАН-структурой значениях  $L_{a\perp}$  межслоевые расстояния  $d_{002}$  и взаимное расположение слоев-лент, составляющих кристаллы углеродных волокон, ближе к характерным для графита.

КРИСТАЛЛОГРАФИЯ том 44 № 5 1999

### выводы

Отличие межслоевого расстояния  $d_{002}$  и взаимного расположения графитоподобных слоевлент, составляющих кристаллические области углеродного волокна, от характерного для графита обусловливается их малыми поперечными размерами.

Процесс трансформации структуры углеродного волокна в графитовую обусловлен процессом роста кристаллов. Плохая графитируемость углеродного волокна вызвана практической неизменностью размеров составляющих его кристаллических областей.

# СПИСОК ЛИТЕРАТУРЫ

- 1. Шулепов С.В. Физика углеграфитовых материалов. М.: Металлургия, 1990. 336 с.
- 2. *Fishbach D.B.* // Chem. and Phys. of Carbon. 1971. V. 7. P. 1.

- 3. Lachter J., Bragg R.H. // Phys. Rev. B. 1986. V. 33. № 12. P. 8903.
- 4. Aladekomo J.B., Bragg R.H. // Carbon. 1990. V. 28. № 6. P. 897.
- 5. *Maire J., Mering J. //* Chem. and Phys. of Carbon. New York: Dekker, 1970. V. 6. P. 125.
- Iwashita N., Inagaki M. // Carbon. 1993. V. 31. № 7. P. 1107.
- Варшавский В.Я. // Химические волокна. 1994. № 3. С. 9.
- Тюменцев В.А., Подкопаев С.А., Беленков Е.А. и др. // Журн. прикл. химии. 1995. Т. 68. Вып. 8. С. 1398.
- Справочник по композиционным материалам (в 2-х кн.) / Под ред. Любина Дж. М.: Машиностроение, 1988. Т. 1. 448 с.
- Китайгородский А.И. Молекулярные кристаллы. М.: Наука, 1971. 424 с.
- 11. Нагорный В.Г. // Конструкционные углеродные материалы. М.: Металлургия, 1985. С. 68–71.
- 12. Беленков Е.А., Шейнкман А.И. // Изв. вузов. Физика. 1991. № 10. С. 67.