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Abstract—The method of an atom—atom potentia has been used to simulate the process of three-dimensional
ordering in a carbon fiber. It has been established that the deviation of the interlayer spacing d, in a carbon
fiber from the analogous value in graphite and the absence of three-dimensiona structural ordering are
explained by small dimensions of crystalline regions. Weak ability to graphitization observed for acarbon fiber
is associated with alimited increase of dimensions of the crystalline regions.

The process of transformation of carbon materials
with adisordered structure into graphite—the so-called
graphitization—can occur during the high-temperature
treatment of these materials[1, 2]. According to the tur-
bostrate model of graphitization suggested by Warren
and Franklin, crystalline regions in a starting carbon
material consist of layers analogous to carbon layersin
graphite but dlightly misoriented with respect to one
another. During heating, the degree of the mutual layer
orientation increases, thus also increasing the dimen-
sions of the crystalline regions. As aresult, polycrystal
line graphite is formed. Bragg and his coauthors
believed that the major shortcoming of thismodel isits
failure of predicting the value of theinterlayer spacings
dooa, Which differs from the analogous distance in
graphite [3, 4]. Later, Maire and Mering [5] suggested
another model, in which the space between the layersis
filled with carbon atoms bonded to these layersand dis-
torting them. Thus, the graphitization process can be
regarded as a number of successive phase transitions of
the states with the fixed values of the above spacings.
This approach explains the difference between the dyg,
values observed in various carbon materias from the
corresponding spacing in graphite, but fails to explain
some other experimental facts: first, the experimentally
established relationship between the interlayer spac-
ings and the crystallite dimensions in carbon materials
[1, 6]; second, the existence of poorly graphitizable
materials, e.g., carbon fibers, which cannot be graphi-
tized even by the temperature treatment at temperatures
above 3000°C, despite the well-known fact that the
graphitization processin the petroleum cokes occurs at
considerably lower temperature, ~2500°C [7-9].

The ambiguous interpretation of the graphitization
process is explained by the fact that one usually deals
with the experimentally determined averaged structural
parameters of the material, whereas the corresponding
models describe the structures of individual crystals.
The direct experimental measurements of the structural

parameters of individua crystals are rather difficult,
and, therefore, one has to use computer simulation for
determining the energetically advantageous structures
of the crystalline regions. The use of a carbon fiber as
an object of computer simulation is dictated by the fact
that the graphitization processin a carbon fiber cannot
be satisfactorily interpreted within the Maire-Mering
model. Thus, we had the aim to simulate the process of
structural ordering in carbon fibers.

STRUCTURAL MODEL
AND COMPUTATIONAL PROCEDURE

The simulation is based on the Rowland model [9]
according to which a carbon fiber consists of fibrils
forming piles of layers-bands oriented mainly along
the fiber axis. The structure of alayer of carbon atoms
bound by covalent bonds was assumed to be similar to
the graphite structure having two subtypes differing by
the bond orientations within the layer. Thefirst subtype
is an analogue of carbon fibers obtained from poly-
acrylenitrile (PAN-structure, Fig. 1a), whereas the sec-
ond subtype, from hydrated cellulose (HC-structure,
Fig. 1b). The layers-band length was taken to be infi-
nite, whereas its width was measured as a number of
atoms in the transverse section and ranged from 2 to
24 atoms.

Simulation of the graphitization processes reduces
to the search for such mutual arrangement of the layers
that would provide the minimum energy of their inter-
action. The computations were performed by the
method of atom—atom potential [10], whose applicabil-
ity to simulation of structural ordering in carbon mate-
rials has aready been proven in a number of studies
[11, 12]. According to this method, the energy of van
der Waals interactions of each atom in the layer with
any another atom of another layer can be calculated by
the formula

E=—Ar’+ Bexp(—ar), (1)
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Fig. 1. Schematic of a graphite-like layer-band with awidth of three atoms: (a) PAN structure (L, = 0.426 nm); (b) HC structure

(Lao = 0.492 nm). Elementary cells of the layer are hatched.

X

Fig. 2. Schematic of the mutual arrangement of two layers with widths of three atoms, with the displacement by avector S = xi + yj

for the PAN structure.

wherer isthe interatomic distance and A, B, and o are
the empirical coefficients. For carbon—carbon interac-
tions, the absolute values of these coefficients are [6]:

A=1.49887 Jnm®/mol,
B =1.75846 x 10% Jmol, 2)
o =358 nm".

Sincethetotal binding energy for two infinite layers
isinfinite and equals the sum of the energies of interac-
tions of al the atoms of one layer with all the atoms of
the other layer, we calculated the specific binding
energy E, of the layers per two atoms forming an inde-
pendent elementary layer cell in graphite. With this
aim, it was necessary to determine an elementary layer
cell in acarbon fiber (Fig. 1). Tranglating this elemen-
tary cell along the band, one can obtain the whole layer.
Then the total energy of layer interactions is equal to
the sum of theinteraction energies of al the cells of one
layer with all the cells of the other layer:

B = z E. = NE, 3)

where N = oo isthe number of cellsinthelayer. The spe-
cific binding energy is equal to the double ratio of the
binding energy of the elementary cell of the layer in a
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carbon fiber to the number n of atomsin the cell:
E, = 2E/n. “4)

Moreover, caculating the energy E., one can
replace aninfinitelayer by alayer of afinitelength. The
calculations show that it is sufficient to use alayer built
by seven (Fig. 2) or eleven elementary cells (for the HC
and PAN structures, respectively). A further increase of
the layer length would change the energy E, by less
than 0.1%.

The computations were performed by varying the
interlayer spacing d,, a the zeroth relative displace-
ment of the layers, i.e., for such layer arrangement that
each atom of the upper layer would be exactly above an
atom of thelower layer. Then, the value of d,, at which
the energy of the layer interactions is minimal was
fixed, and the binding energies were calculated at vari-
ous magnitudes of the vector S (Fig. 2) setting therela-
tive displacement of the layers:

S = xi+vyj, 5)

wherei and j are the translation unit vectors along the
axes x andy, respectively ((fi| = |j| = 1). The x-value for
the HT structure varied from 0 to 3a (a = 0.142 nmis
the shortest distance between the carbon atoms in the
layer) at avariation step Ax = 0.15a. The value of y var-
ied from —2.5ac0s30° up to 2.5acos30° at a variation
step Ay = 0.5acos30°. For the PAN structure, the corre-
sponding variation ranges for x [ [-2.5acos30°,
2.5acos30°] and y O [0, 3a] are Ax = 0.5acos30° and
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Tablel. Interlayer spacing dyg, and specific energies E; of van der Waals interactions for various widths of graphite-like
layersin acarbon fiber for the model in which the layers are located one above the other without any displacement

Layer Structure
i ambars HC PAN

of atoms Lo nm dogp, NM E, Jmol Lo NM ooz, NM E,, Jmol
2 0.246 0.3457 —5295.9 0.213 0.3469 —4950.1

3 0.492 0.3428 —6366.0 0.426 0.3436 —-6083.8

4 0.738 0.3413 —6960.1 0.639 0.3420 —6734.1

5 0.984 0.3407 —7330.2 0.852 0.3411 —7145.1

6 1.230 0.3402 —7581.1 1.065 0.3405 —7425.9

7 1.476 0.3398 —7761.8 1.278 0.3401 —7628.9

8 1722 0.3395 —7897.9 1491 0.3399 —7782.4

10 2.214 0.3393 —-8089.1 1917 0.3395 —7997.2
12 2.705 0.3390 —-8217.3 2.343 0.3392 —8143.2
14 3.197 0.3389 —8308.6 2.769 0.3391 —-8245.4
16 3.689 0.3387 —-8377.6 3.195 0.3389 -8323.2
20 4.673 0.3386 —8473.4 4.047 0.3387 —-8432.0
24 5.657 0.3385 —8538.2 4.899 0.3386 —-8504.5

00 0 0.3380 —8840.5 00 0.3380 —8840.5

Table 2. Interlayer spacings dyg,, the displacements of the layerswith respect to one another set by the vector S, and the spe-
cific energy E of van der Waalsinteractions for layers of different lengths L,

Layer Structure
i numbers HC PAN

ofatoms | | nm IS, nm doo "M | Eg Jmol | Lo, nm S|, nm doops "M | Eg, Jmol
2 0.246 0.1840 0.3422 -5446.0 0.213 0.1231 0.3452 -5021.9

3 0.492 0.1644 0.3398 —6517.7 0.426 0.1231 0.3418 —-6173.9

4 0.738 0.1576 0.3386 —7112.0 0.639 0.1231 0.3401 —6824.3

5 0.984 0.1540 0.3380 —7481.9 0.852 0.1232 0.3392 —7251.6

6 1.230 0.1509 0.3376 —7732.5 1.065 0.1232 0.3386 —7536.6

7 1.476 0.1499 0.3373 —7913.0 1.278 0.1233 0.3382 —7742.5

8 1.722 0.1465 0.3370 —-8048.9 1.491 0.1235 0.3379 —7898.3

10 2.214 0.1461 0.3369 —8239.9 1917 0.1269 0.3374 —-8118.9

12 2.705 0.1449 0.3366 —-8367.6 2.343 0.1294 0.3371 —-8267.3

00 00 0.1420 0.3357 —9006.5 00 0.1420 0.3357 —9006.5

Ay = 0.15a. We calculated the energy of layersinterac-
tions for 231 magnitudes of the vector S.

We also determined the magnitudes of the vectors
setting the mutual arrangement of the layers such that
the energy of their interaction was minimal. Then,
using the thus found magnitudes of S, we refined the
most energetically advantageous value of theinterlayer

spacing dy; -
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RESULTS OF COMPUTATIONS
AND DISCUSSION

The results of model computations are listed in
Tables 1 and 2. It has been established that the inter-
layer spacings at which the energy of the layer interac-
tions is minimal depend on the layer widths. For the
layer arrangement such that each atom of one layer is
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Fig. 3. (8) The variation of the interlayer spacing dyy, (1)
PAN and HC structures at S= 0, (2) PAN structure at S# 0,
(3) HC structure at S # 0) and (b) the relative arrangement
of the layers in the (1) HC structure, (2) PAN structure as
functions of the layer width.

located above the atom of ancther layer (i.e., S =0), the
experimental points of the HC and the PAN structures
fit the same curve (Fig. 3a). Thus, at the layer width
~0.45 nm, theinterlayer d,,, spacingis=0.3434 nm. An
increase of the layer width L5 up to 5 nm resultsin a
decrease of d,,, down to 0.3386 nm. A further increase
of the layer width to infinity is accompanied by a grad-
ual decrease of the interlayer spacing to 0.3380 nm.
The estimation of the energetically advantageous spac-
ings of thelayer arrangement corresponding to the min-
imum spacing aong all thethreedimensions, i.e., at S #
0, demonstrates the differences in the process of d,,
reduction provided by anincrease of L for theHC and
PAN structures. For the HC structure built by the layers
of the same dimensions, the interlayer spacings are less
than for the PAN structure (Fig. 3a8). Thus, at L5 =
1.5nm, we have d,, (PAN) = 0.3378 nm and
dox(HC) = 0.3372 nm. However, if the transverse
dimension tends to infinity, the interlayers spacings for
both structurestend to avalue of 0.3357, which isclose
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to the analogous value characteristic of graphite.
Simultaneously with a decrease of the interlayer spac-
ings, an increase of the layer width providesareduction
of the specific interaction energy. At the zeroth S vector,
the absolute value of E, decreases from —4950.1 Jmol
a the transverse layer dimensions 0.213 nm to
—-8840.5 Jmol at infinite layer dimensions. If the
energy of the layer interaction is also minimized
because of the most advantageous mutual layer dis-
placement (S # 0), then E; = — 5021.9 Jmol at L, =
0.213 nm and E; = —9006.5 Jmol at L = .

Theresults of the computationsat S # 0 arelisted in
Table 2 and shown in Figs. 3b and 4. It is established
that at layerswidth lessthan 3 nm, the vector of therel-
ative displacement at which the energy of layer interac-
tions is minimal differs from the analogous value for
the graphite structure. Thus, at L, = 0.5 nm, the value
is|S|=0.164 nm for the HC structure and 0.123 nm, for
the PAN structure, whereas for graphite, the corre-
sponding value equals 0.142 nm. With an increase of
the layer width, |S| gradually changes, so that at L,
tending to infinity, the relative displacement of the lay-
ersisthe same as for the graphite structure.

Thus, it has been established that, similar to the sit-
uation in disperse carbon [11, 12], different values of
interlayer spacings d,, in a carbon fiber and graphite
are provided by small dimensions of crystalline regions
in carbon fibers. The fine-crystalline structure of a car-
bon fiber does not alow the formation of a three-
dimensional order in the arrangement of the constituent
graphite-like layers. The structure of small crystalline
regions with the interlayer spacing d,,, different from
the analogous spacing in graphite cannot be considered
as a defect structure. On the contrary, this structure is
equilibrium and energetically advantageous. Therefore,
the most adequate model of graphitization isthe tutbos-
trate model.

The main argumentsfor the defect-induced increase
of theinterlayer spacing in graphite are provided by the
experiments on graphite grinding and its irradiation
with high-energy neutrons|[3, 4]. In these studies, non-
monotonic variations of the d,,, spacing depending on
the fragment dimensions and the irradiation dose were
recorded. However, the phenomenon seems to be
explained by a more or less stepwise variation of the
average crystal dimensions during grinding and irradi-
ation rather than by defects |ocated between the layers.

The transformation of the turbostrate structure of a
carbon fiber into the graphite structure is possible only
for larger crystals. Therefore, the weak graphitization
of carbon fibersis explained by small dimensionsof the
crystals, which, in turn, is explained by small dimen-
sions of fibrils formed still in the starting polymeric
fibers.

The process of carbon-fiber graphitization also
depends on the type of its structure. For the HC struc-
ture having the same L values as the PAN structure,
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Fig. 4. Specific energy of van der Waals interactions (in Jmal) as a function of the mutual layer arrangement and the transverse
dimensions of the layer: (a—c) HC structure (2, 6, and 12 atoms), (d—f) PAN-structure (2, 6, and 12 atoms).

theinterlayer spacings d,,, and the mutual arrangement
of the layers-bands forming the crystals of carbon
fibers are closer to those characteristic of graphite.

CONCLUSIONS

The differences observed in the interlayer spacing
doo, and the mutual arrangement of graphite-like lay-
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ers-bands forming the crystalline regions in carbon
fibers from those characteristic of graphite are
explained by small transverse dimensions of the crys-
talline regionsin the fibers.

Thetransformation of the carbon-fiber structureinto
the graphite structure is provided by the process of
crystal growth. Weak graphitization of carbon fibersis
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explained by almost constant dimensions of the crystal-
lineregionsin the fibers.
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