= ТЕОРИЯ КРИСТАЛЛИЧЕСКИХ СРУКТУР=

УДК 546.26

СТРУКТУРА ЗД-ГРАФИТА

© 2010 г. Е.А.Беленков, В.А.Али-Паша

Челябинский государственный университет E-mail: belenkov@csu.ru Поступила в редакцию 08.04.2010 г.

С помощью методов молекулярной механики рассчитаны структуры кластеров ряда новых углеродных 3*D*-графитовых фаз. Установлено, что политипы 3*D*-графита $\alpha_{1,1}$, $\alpha_{1,3}$, $\alpha_{1,5}$, $\alpha_{2,1}$, $\alpha_{2,3}$, $\alpha_{3,1}$ и $\beta_{1,2}$, $\beta_{1,4}$, $\beta_{1,6}$, $\beta_{2,1}$, $\beta_{3,2}$ состоят из *sp*²-гибридизированных атомов, имеют гексагональные элементарные ячейки и различаются структурой слоев и порядком их чередования. Возможный способ экспериментального синтеза новых углеродных фаз — полимеризация и карбонизация углеводородных молекул.

ВВЕДЕНИЕ

Структура углеродных материалов, состоящих из *sp*²-гибридизированных атомов – слоевая графитоподобная, такие материалы характеризуются сильной анизотропией свойств - высокими прочностными свойствами вдоль плоскости слоев и на порядок более низкими характеристиками в направлении перпендикулярном слоям [1-4]. В результате чего их используют лишь как наполнители в составе композитов [4-6]. Высокими прочностными свойствами во всех кристаллографических направлениях обладает алмаз (состоит из атомов в состоянии *sp*³-гибридизации), однако использование конструкционных материалов на его основе не получило широкого распространения из-за высокой стоимости синтеза. Поэтому поиск новых углеродных структур с высокими прочностными свойствами во всех кристаллографических направлениях является задачей представляющей как практический, так и научный интерес. Очевидно, что высокие прочностные характеристики могут быть обеспечены, если структура материала будет трехмерно связанной (3D-структура) прочными ковалентными связями.

В настоящее время достигнуты определенные успехи в поиске таких фаз. К углеродным материалам с прочносвязанной 3*D*-структурой, которые синтезированы в настоящее время, относятся стеклоуглерод и углеситалл [7, 8]. Кроме того, возможен синтез высокопрочных объемносвязанных структур на основе фуллеренов и нанотрубок. В России в 1995 г. были экспериментально синтезированы 3*D*-полимеры C₆₀ при нагревании конденсата C₆₀ под давлением [9]. Для частично полимеризованной структуры соотношение атомов $sp^2 : sp^3$ составляет 24 : 36, в полностью полимеризованной стадии доля sp^3 -гибридизированных атомов углерода достигает 80% [9, 10]. Также возможно формирование жестких трехмерных структур из жгутов углеродных нанотрубок [11, 12]. Кроме того, на основании выполненных модельных расчетов предполагается возможность устойчивого существования еще ряда гипотетических структур из карбиновых наноколец, глиттера, хонекомба, клесрита [13–18].

Одним из основных направлений, в котором в настоящее время ведется поиск новых углеродных структур, является изучение возможностей синтеза материалов, состоящих из атомов углерода в различных гибридизированных состояниях. Такой подход предполагает априорное допущение, что из *sp*-гибридизированных атомов можно получить только цепочечные структуры, из sp^2 слоевые, и только из *sp*³ – трехмерные прочносвязанные. В связи с этим предположением пытаются получать материалы из смесей атомов в различных состояниях гибридизации $sp-sp^3$, sp^2-sp^3 или sp- sp^2 - sp^3 . Однако, как продемонстрировано в [13, 14], даже из углеродных атомов в состоянии, близком к sp-гибридизированному, возможно получить трехмерные жестко связанные структуры.

Теоретический анализ возможной структуры фаз, состоящих только из углеродных атомов в состоянии sp^2 -гибридизации, показал возможность устойчивого существования ряда слоевых структурных разновидностей графитоподобных материалов [19–21]. На рис. 1а, 16 приведены примеры таких слоев из sp^2 -гибридизированных атомов углерода, предложенных в [19, 20].

Из этих двухмерных слоев возможно формирование кристаллов с трехмерно-упорядоченной слоевой структурой [19–21]. Но наибольший интерес представляют работы, посвященные анализу возможной структуры 3D-фаз из sp^2 -углеродных атомов. Первая трехмерная жестко связная углеродная структура была предложена еще в 1946 г. в работе Райли с соавторами [22, 23]. Трехмерные углеродные сети, состоящие только из

Рис. 1. 2D-углеродные слои из *sp*²-гибридизированных атомов (а) (б) [19, 20], 3*D*-углеродная структура из *sp*²-гибридизированных атомов ("металлический углерод") (в) [25].

Рис. 2. Относительное расположение слоев в $\alpha_{1,1}$ (а) и $\beta_{1,2}$ (б) фазах 3*D*-графита.

 sp^2 -углеродных атомов, были также предметом исследований Хоффманна с соавторами [24, 25]. На рис. 1в изображена предложенная ими трехмерная структура, состоящая из гофрированных слоев регулярно сшитых ортогональными полиеновыми цепочками. Предполагается, что такая структура должна обладать металлическими свойствами [24, 25]. Данная работа продолжает исследования новых гипотетических 3*D*-углеродных фаз, состоящих только из sp^2 -гибридизированных атомов.

МЕТОДИКА МОДЕЛИРОВАНИЯ И СТРУКТУРНЫЕ МОДЕЛИ

Исследование фаз было выполнено модельными методами: геометрическая оптимизация выполнялась методом *ММ*+ [26], расчет энергетических характеристик сделан полуэмпирическим квантово-механическим методом PM3 [27].

Расчет средней энергии углерод-углеродной связи выполнен путем нахождения полной энергии всех связей в кластерах как углерод-углеродных, так и углеводородных связей. Из полной энергии вычиталась энергия углеводородных связей, расчет значений энергий этих связей был выполнен для молекул метана. Затем полученное значение суммарной энергии всех углерод-углеродных связей в кластере делили на количество таких связей, получая в результате среднюю энергию одной углерод-углеродной связи.

Новые гипотетические трехмерно жестко связанные структуры, состоящие только из sp^2 -гибридизированых атомов, по-видимому, могут быть получены по следующему механизму: возьмем графеновый лист и развернем в нем часть шестиугольников (гексагонов) перпендикулярно плоскости слоя, тогда при сшивке таких графитоподобных слоев получим новый класс трехмерно жестко связанных структур, где атомы будут находиться только в состоянии, близком к sp^2 -гибридизированному.

3*D*-графиты могут различаться структурой слоев и порядком их чередования. Если расположение атомов в соседних слоях таково, что каждый атом одного слоя расположен над атомом другого, то могут формироваться $\alpha_{n,m}$ -фазы (рис. 2a).

Другое возможное расположение соседних слоев таково, что один слой развернут относительно другого на 30° — такие фазы были обозначены как $\beta_{n,m}$ -фазы (рис. 2 б). Первый индекс *n* в обозначении фаз равен числу гексагонов, ориентированных перпендикулярно к плоскости гра-

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

Рис. 3. Схема обозначения структур $\alpha_{1, m}$ и $\beta_{1, m}$ 3*D*-графитов отличающихся по расстоянию между слоями: $a - \alpha_{1, 1}$ $(m = 1), 6 - \beta_{1, 2}$ $(m = 2), B - \alpha_{1, 3}$ $(m = 3), \Gamma - \beta_{1, 4}$ (m = 4).

Рис. 4. Изображения фрагментов кристаллических решеток 3*D*-графитовых фаз: $\alpha_{1, 1}(a)$; $\alpha_{2, 1}(6)$; $\alpha_{1, 3}(B)$; $\alpha_{2, 3}(\Gamma)$; $\beta_{1, 2}(\pi)$; $\beta_{3, 2}(e)$.

фитоподобных слоев при соединении гексагонов, лежащих в плоскости этих слоев (n = 1, 2, ...) (рис. 2). Второй индекс *m* характеризует расстояние между соседними графитоподобными слоями, так что его значение равно количеству атом-

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

ных рядов между графитоподобными слоями (m = 1, 2, ...) (рис. 3).

В процессе моделирования выполнялся расчет геометрически оптимизированной структуры и свойств кластеров $\alpha_{1,1}$, $\alpha_{1,3}$, $\alpha_{1,5}$, $\alpha_{2,1}$, $\alpha_{2,3}$, $\alpha_{3,1}$ и

Рис. 5. График зависимости средней энергии углеродуглеродной связи от количества атомов углерода в кластере для фаз: $\bigcirc -\alpha_{1, 1}, \Box -\alpha_{1, 3}, \bullet -\beta_{1, 2}, \blacksquare -\beta_{1, 4}.$

β_{1, 2}, β_{1, 4}, β_{1, 6}, β_{2, 1}, β_{3, 1}, β_{3, 2} фаз. Количество атомов в кластерах варьировалось от 102 до 708 атомов. Оборванные углерод-углеродные связи на поверхности кластеров были компенсированы добавлением атомов водорода.

РЕЗУЛЬТАТЫ РАСЧЕТОВ И ИХ ОБСУЖДЕНИЕ

В результате расчетов 11 различных фаз 3*D*-графитов найдена их геометрически оптимизиро-

ванная структура. Изображения фрагментов нескольких кристаллических решеток приведены на рис. 4. Структура рассчитанных фаз является трехмерной жестко связанной, однако четко наблюдается слоевой мотив. Все атомы находятся в состоянии *sp*²-гибридизации, т.е. имеют связи с тремя соседними атомами. Все решетки имеют общую особенность - графитоподобные слои сшиты между собой трубчатыми структурами, для α-фаз трубчатые структуры имеют в сечении форму треугольника, а β-фазы – форму круга. Атомы графитободобных слоев в α-фазах располагаются друг под другом, а в β-фазах соседние графитоподобные слои развернуты на 30° друг относительно друга. Размер сечения трубчатых структур, соединяющих графитоподобные слои, варьируется при изменении индекса n, а длина при изменении индекса т.

Для рассчитанных фаз были найдены параметры элементарных ячеек, принадлежащих к гексагональной сингонии. Численные значения длин векторов элементарных трансляций приведены в табл. 1. Количество атомов в элементарных ячейках 3D-графитовых фаз варьируется от 18 (для политипа $\alpha_{1,1}$) до 120 (политип $\beta_{3,2}$). Минимальная длина вектора элементарной трансляции в плоскости *ху* составляет 8.28 Å для фазы $\alpha_{1,3}$, а максимальная — 17.31 Å для фазы $\alpha_{3,1}$. Вектор элементарной трансляции в направлении кристаллографической оси z зависит от количества атомных слоев между графитоподобными, т.е. определяет длину трубчатого элемента, соединяющего графитоподобные слои. Вектор z варьируется от 2.55 Å в $\alpha_{3,1}$ -фазе до 16.76 в $\beta_{1,6}$ -фазе. Оценка плотностей 3D-графитовых политипов показала, что величина этого параметра может изменяться в широком диапазоне от 1259 кг/м³ (для политипа

Таблица 1. Параметры элементарных ячеек и плотность 3*D*-графитовых фаз, алмаза и графита

Фаза	Сингония	<i>N</i> , атомов	<i>a</i> , Å	$c, \mathrm{\AA}$	$V, Å^3$	ρ, кг/м ³
3 <i>D</i> -графит $\alpha_{1,1}$	гексагональная	18	8.56	2.57	163.1	2209
3 <i>D</i> -графит β _{1,2}	гексагональная	48	8.27	7.01	415.6	2298
3 <i>D</i> -графит $\alpha_{1,3}$	гексагональная	30	8.28	4.86	283.9	2102
3 <i>D</i> -графит β _{1,4}	гексагональная	72	8.28	11.79	711.1	2147
3 <i>D</i> -графит а _{1,5}	гексагональная	42	8.35	7.16	433.9	1927
3 <i>D</i> -графит β _{1,6}	гексагональная	96	8.35	16.76	1012.1	1887
3 <i>D</i> -графит $\alpha_{2,1}$	гексагональная	30	12.92	2.77	401.2	1487
3 <i>D</i> -графит β _{2,1}	гексагональная	58	12.09	4.82	610.7	1889
3 <i>D</i> -графит $\alpha_{2,3}$	гексагональная	54	12.57	4.84	664.0	1618
3 <i>D</i> -графит $\alpha_{3,1}$	гексагональная	42	17.31	2.55	663.8	1259
3 <i>D</i> -графит β _{3,2}	гексагональная	120	16.55	7.31	1667.7	1431
Графит	гексагональная	4	2.46	6.71	35.2	2269
Алмаз	ГЦК	8	3.57	—	45.5	3507

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

Таблица 2. Энергетические характеристики кластеров различных фаз 3*D*-графита (N — полное число атомов в кластере, E — полная энергия связей кластера, $\langle E_{C-C} \rangle$ — средняя энергия одной углерод-углеродной связи)

Фаза 3 <i>D</i> -гра- фита	Молеку- лярная формула	<i>N</i> , ато- мов	<i>Е</i> , (кДж/моль)	⟨Е _{С-С} ⟩, (кДж/моль)
$\alpha_{1,1}$	C ₆₆ H ₃₆	102	-53244.04	-328.5
$\alpha_{1,1}$	$C_{162}H_{72}$	234	-126688.63	-306.2
$\alpha_{1,1}$	$C_{246}H_{108}$	354	-190201.25	-301.2
$\alpha_{1,3}$	C ₇₈ H ₃₆	114	-61284.60	-309.3
$\alpha_{1,3}$	$C_{198}H_{72}$	270	-150937.67	-289.6
$\alpha_{1,3}$	$C_{330}H_{108}$	438	-246873.91	-279.1
$\alpha_{1,5}$	$C_{90}H_{36}$	126	-69156.58	-298.6
$\alpha_{2,1}$	$C_{96}H_{48}$	144	-76509.25	-318.8
$\alpha_{2,1}$	C ₂₅₂ H ₁₀₈	360	-196774.40	-303.7
$\alpha_{2,1}$	C ₃₄₈ H ₁₂₀	468	-262559.90	-284.8
$\alpha_{2,3}$	$C_{120}H_{48}$	168	-93118.73	-298.4
$\alpha_{2,3}$	C ₃₂₄ H ₁₀₈	432	-246493.75	-285.1
$\alpha_{2,3}$	C ₅₁₆ H ₁₂₀	636	-378619.11	-265.4
$\alpha_{3,1}$	C ₁₂₆ H ₆₀	186	-998080.86	-313.8
$\alpha_{3,1}$	$C_{324}H_{144}$	468	-266677.83	-322.8
$\alpha_{3,1}$	$C_{450}H_{132}$	582	-335636.30	-27.56
$\beta_{1,2}$	C ₇₂ H ₃₆	108	-57531.46	-319.2
$\beta_{1,2}$	$C_{186}H_{78}$	264	-144986.31	-302.4
$\beta_{1,2}$	C ₂₈₈ H ₁₀₈	396	-220446.88	-291.8
$\beta_{1,4}$	C ₈₄ H ₃₆	120	-15592.62	-301.6
$\beta_{1,4}$	C ₂₂₂ H ₇₈	300	-168160.52	-285.8
$\beta_{1,4}$	C ₃₇₂ H ₁₀₈	480	-274705.83	-272.5
$\beta_{1.6}$	C ₉₆ H ₃₆	132	-73172.39	-290.7
$\beta_{2,1}$	$C_{96}H_{48}$	144	-76026.88	-316.7
$\beta_{2,1}$	C ₂₅₈ H ₁₁₄	372	-200535.27	-299.6
$\beta_{2,1}$	C ₃₄₈ H ₁₂₀	468	-259604.48	-280.6
β _{3.2}	C ₁₄₄ H ₆₀	204	-112245.30	-301.5
β _{3.2}	$C_{402}H_{150}$	552	-309146.22	-292.5
β _{3,2}	C ₅₇₆ H ₁₃₂	708	-423416.45	-265.1

 $\alpha_{3, 1}$) до 2298 кг/м³ (политип $\beta_{1, 2}$), принимая значения как большие, так меньшие по сравнению с 2269 кг/м³ — плотностью обычного графита (табл. 1).

Для сравнения фаз между собой выполнен расчет энергетических характеристик кластеров различных размеров и форм (дискообразные и игольчатые). В табл. 2 приведены молекулярные формулы рассчитываемых кластеров, численные значения полной энергии связей в кластерах E и средней энергии одной углерод-углеродной связи $\langle E_{C-C} \rangle$. В различных кластерах E изменяется от — 53244.04 кДж/моль в кластере, содержащем

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

Рис. 6. График зависимости средней энергии углеродуглеродной связи от количества атомов углерода в кластере для фаз: $\bigcirc -\alpha_{1, 1}, \triangle -\alpha_{2, 1}, \diamondsuit -\alpha_{3, 1}.$

102 атома, до -423416.45 кДж/моль в кластере, содержащем 708 атомов.

Из данных табл. 2 построены графики зависимости средней энергии углерод-углеродной связи от количества атомов углерода в кластере для различных рассчитанных фаз.

На рис. 5 приведен график зависимости средней энергии углерод-углеродной связи от количества атомов углерода в кластере для фаз $\alpha_{1,1}$, $\alpha_{1,3}$, $\beta_{1,2}$, $\beta_{1,4}$. Этот график демонстрирует явное увеличение $\langle E_{\rm C-C} \rangle$ всех фаз при увеличении количества атомов в кластере. При увеличении длины трубчатого элемента, соединяющего графитоподобные слои, средняя энергия углерод-углеродной связи, а следовательно, и энергия сублимации фазы уменьшается, что говорит о меньшей термодинамической устойчивости таких фаз.

Анализируя аналогичные графики зависимости для фаз $\alpha_{1,1}$, $\alpha_{2,1}$, $\alpha_{3,1}$ (рис. 6) и фаз $\beta_{1,2}$, $\beta_{2,1}$, $\beta_{3,2}$ (рис. 7), видим, что также имеет место явное увеличение $\langle E_{C-C} \rangle$ всех фаз при увеличении количества атомов в кластере, но нет явной энергетической зависимости от размера сечения трубчатого элемента, соединяющего графитоподобные слои как для α -, так и для β -фаз.

Возможный способ получения 3*D*-графита это синтез углеводородных молекул в результате их полимеризации и карбонизации. Причем для синтеза различных политипов, по-видимому, необходимо использовать различные исходные молекулы, имеющие структуру углеродного каркаса, как можно более близкую к структуре конечной

Рис. 7. График зависимости средней энергии углеродуглеродной связи от количества атомов углерода в кластере для фаз: $\bullet - \beta_{1, 2}$, $\blacktriangle - \beta_{2, 1}$, $\bullet - \beta_{3, 2}$.

фазы, которую нужно получить. В качестве способов воздействия, при помощи которых необходимо осуществлять полимеризацию и карбонизацию, наиболее подходящими представляются химические и радиационные.

Таким образом, в результате выполненных модельных расчетов доказана возможность устойчивого существования ряда новых трехмерно жестко связанных 3D-графитовых фаз, (все атомы углерода в которых должны находиться в состоянии sp^2 -гибридизации). Определены параметры элементарных ячеек и плотности одиннадцати 3Dграфитовых политипов. Предложен возможный способ экспериментального синтеза.

СПИСОК ЛИТЕРАТУРЫ

- Шулепов С.В. Физика углеграфитовых материалов. М.: Металлургия, 1990. 336 с.
- 2. Островский В.С., Виргильев Ю.С., Костиков В.И., Шипков Н.Н. Искусственный графит. М.: Металлургия, 1986. 272 с.
- 3. Беленков, Е.А., Ивановская В.В., Ивановский А.Л. Наноалмазы и родственные углеродные наноматериалы. Екатеринбург: УрО РАН, 2008. 169 с.

- Handbook of carbon, graphite, diamond and fullerenes / Ed. Pierson H.O. 1993. Noyes Publication, Park Ridge, New Jersey, U.S.A. 402 p.
- 5. *Фиалков А.С.* Углерод, межслоевые соединения и композиты на его основе. М.: Аспект Пресс, 1997. 718 с.
- 6. Handbook of composites / Ed. Lubin G. New York. 1982. V. 1. 447 p.
- 7. Pesin L.A., Baitinger E.M. // Carbon. 2002. V.40. P. 295.
- Федоров В.Б., Шоршоров М.Х., Хакимова Д.К. Углерод и его взаимодействие с металлами. М.: Металлургия, 1978. 208 с.
- Brazhkin V.V., Lyapin A.G. // Phys. Rev. Lett. B. 2000. V. 85. № 26. P. 5671.
- Okada S., Saito S., Oshiyama A. // Phys. Rev. Lett. B. 1999. V. 83. № 10. P. 1986.
- Thess A., Lee R., Nikolaev P. et al. // Science. 1996. V. 273. P. 483.
- Domingos H.S. // J. Phys.: Condens. Matter. 2004. V. 16. P. 9083.
- Беленков Е.А., Шабиев Ф.К. // Изв. Челябинского научного центра. 2006. №2(32). С. 7.
- Беленков Е.А., Шабиев Ф.К. // Кристаллография. 2007. Т. 52. № 2. С. 359.
- Bucknum M.J., Hoffmann R. // J. Am. Chem. Soc. 1994. V. 116. P. 11456.
- 16. Bucknum M.J. // Carbon. 1997. V. 35. № 1. P. 1.
- 17. *Park N., Ihm J.* // Phys. Rev. B. 2000. V. 62. № 11. P. 7614.
- 18. Bernasconi M., Gaito S., Benedek G. // Phys. Rev. B. 2000. V.61. № 19. P. 12689.
- Balaban A.T., Rentia C.C., Ciupitu E. // Rev. Roum. Chim. 1968. V.13. P. 231.
- Balaban A.T. // Comput. Math. Applic. 1989. V. 17. P. 397.
- 21. Bucknum M.J., Castro E.A. // Solid State Sci. 2008. doi:10.1016/j.solidstatesciences.2007.11.035.
- 22. Gibson J., Holohan M., Riley H.L. // J. Chem. Soc. 1946. P. 456.
- Riley H.L. // J. Chim. Phys. Phys.-Chim. Biol. 1950. V. 47. P. 565.
- 24. Merz K.M., Hoffmann Jr.R., Balaban A.T. // J. Am. Chem. Soc. 1987. V. 109. P. 6742.
- 25. *Hoffmann R., Hughbanks T., Kertesz M., Bird P.H.* // J. Am. Chem. Soc. 1983. V. 105. P. 483.
- 26. Berkert U., Allinger N.L. // Am. Chem. Soc. Monograph. 1982. V. 177. P. 1.
- Dewar M.J.S., Donn M.S. // J. Am. Chem. Soc. 1985. V. 107. P. 3898.

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011